【題目】設(shè)圓 的圓心為F1 , 直線l過(guò)點(diǎn)F2(2,0)且不與x軸、y軸垂直,且與圓F1于C,D兩點(diǎn),過(guò)F2作F1C的平行線交直線F1D于點(diǎn)E,
(1)證明||EF1|﹣|EF2||為定值,并寫出點(diǎn)E的軌跡方程;
(2)設(shè)點(diǎn)E的軌跡為曲線Γ,直線l交Γ于M,N兩點(diǎn),過(guò)F2且與l垂直的直線與圓F1交于P,Q兩點(diǎn),求△PQM與△PQN的面積之和的取值范圍.
【答案】
(1)證明:圓 ,圓心F1(﹣2,0),半徑r=2,如圖所示.
因?yàn)镕1C∥EF2,所以∠F1CD=∠EF2D.
又因?yàn)镕1D=F1C,所以∠F1CD=∠F1DC,
所以∠EF2D=∠F1DC,
又因?yàn)椤螰1DC=∠EDF2,所以∠EF2D=∠EDF2,
故ED=EF2,可得||EF1|﹣|EF2||=||EF1|﹣|ED||=|F1D|=2<|F1F2|,
根據(jù)雙曲線的定義,可知點(diǎn)E的軌跡是以F1,F(xiàn)2為焦點(diǎn)的雙曲線(頂點(diǎn)除外),
且a=1,c=2,b= = ,
故點(diǎn)E的軌跡方程為
(2)解: .
依題意可設(shè)l:x=my+2(m≠0),M(x1,y1),N(x2,y2),
由于PQ⊥l,設(shè)lPQ:y=﹣m(x﹣2).
圓心F1(﹣2,0)到直線PQ的距離 ,
所以 ,
又因?yàn)閐<2,解得 .
聯(lián)立直線l與雙曲線Γ的方程 ,消去x得(3m2﹣1)y2+12my+9=0,
則 ,
所以 ,
記△PQM,△PQN的面積分別為S1,S2,
則 ,
又因?yàn)? ,所以S1+S2∈(12,+∞),
所以S1+S2的取值范圍為(12,+∞)
【解析】(1)求得圓F1的圓心和半徑,運(yùn)用平行線的性質(zhì)和等腰三角形的性質(zhì),可得ED=EF2,再由雙曲線的定義,即可得到所求定值和雙曲線的方程;(2)設(shè)出l:x=my+2(m≠0),lPQ:y=﹣m(x﹣2),設(shè)M(x1,y1),N(x2,y2),求出圓心到直線PQ的距離,運(yùn)用弦長(zhǎng)公式可得|PQ|;再由直線l的方程和雙曲線的方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,可得|MN|,再由三角形的面積公式可得△PQM與△PQN的面積之和為 |MN||PQ|,化簡(jiǎn)整理,結(jié)合不等式的性質(zhì),即可得到所求范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面α⊥平面β,α∩β=直線l,A,C是α內(nèi)不同的兩點(diǎn),B,D是β內(nèi)不同的兩點(diǎn),且A,B,C,D直線l,M,N分別是線段AB,CD的中點(diǎn).下列判斷正確的是( )
A.當(dāng)|CD|=2|AB|時(shí),M,N兩點(diǎn)不可能重合
B.M,N兩點(diǎn)可能重合,但此時(shí)直線AC與直線l不可能相交
C.當(dāng)AB與CD相交,直線AC平行于l時(shí),直線BD可以與l相交
D.當(dāng)AB,CD是異面直線時(shí),MN可能與l平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一?少1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒多賺0.5元;如果當(dāng)天未能按量完成任務(wù),則按完成的雕刻量領(lǐng)取當(dāng)天工資. (Ⅰ)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過(guò)去10天每天的雕刻量n(單位:粒),整理得如表:
雕刻量n | 210 | 230 | 250 | 270 | 300 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(ⅰ)在當(dāng)天的收入不低于276元的條件下,求當(dāng)天雕刻量不低于270個(gè)的概率;
(ⅱ)若X表示雕刻師當(dāng)天的收入(單位:元),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)作出函數(shù)y=f(x)在一個(gè)周期內(nèi)的圖象,并寫出其單調(diào)遞減區(qū)間;
(2)當(dāng) 時(shí),求f(x)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斐波那契數(shù)列{an}滿足: .若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前n項(xiàng)所占的格子的面積之和為Sn , 每段螺旋線與其所在的正方形所圍成的扇形面積為cn , 則下列結(jié)論錯(cuò)誤的是( )
A.
B.a1+a2+a3+…+an=an+2﹣1
C.a1+a3+a5+…+a2n﹣1=a2n﹣1
D.4(cn﹣cn﹣1)=πan﹣2an+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體ABCDEF中,底面ABCD為矩形,EF∥CD,AD⊥FC.點(diǎn)M在棱FC上,平面ADM與棱FB交于點(diǎn)N.
(Ⅰ)求證:AD∥MN;
(Ⅱ)求證:平面ADMN⊥平面CDEF;
(Ⅲ)若CD⊥EA,EF=ED,CD=2EF,平面ADE∩平面BCF=l,求二面角A﹣l﹣B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn).
(1)求證:AM∥平面SCD;
(2)求平面SCD與平面SAB所成的二面角的余弦值;
(3)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與平面SAB所成的角為θ,求sinθ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)半徑不等的圓盤疊放在一起(有一軸穿過(guò)它們的圓心),兩圓盤上分別有互相垂直的兩條直徑將其分為四個(gè)區(qū)域,小圓盤上所寫的實(shí)數(shù)分別記為x1 , x2 , x3 , x4 , 大圓盤上所寫的實(shí)數(shù)分別記為y1 , y2 , y3 , y4 , 如圖所示.將小圓盤逆時(shí)針旋轉(zhuǎn)i(i=1,2,3,4)次,每次轉(zhuǎn)動(dòng)90° , 記Ti(i=1,2,3,4)為轉(zhuǎn)動(dòng)i次后各區(qū)域內(nèi)兩數(shù)乘積之和,例如T1=x1y2+x2y3+x3y4+x4y1 . 若x1+x2+x3+x4<0,y1+y2+y3+y4<0,則以下結(jié)論正確的是( )
A.T1 , T2 , T3 , T4中至少有一個(gè)為正數(shù)
B.T1 , T2 , T3 , T4中至少有一個(gè)為負(fù)數(shù)
C.T1 , T2 , T3 , T4中至多有一個(gè)為正數(shù)
D.T1 , T2 , T3 , T4中至多有一個(gè)為負(fù)數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com