【題目】點A,B,C,D在同一個球的球面上,AB=BC=2,AC=2 ,若四面體ABCD體積的最大值為 ,則該球的表面積為(
A.
B.8π
C.9π
D.12π

【答案】C
【解析】解:根據(jù)題意知,△ABC是一個直角三角形,其面積為2.其所在球的小圓的圓心在斜邊AC的中點上,設(shè)小圓的圓心為Q,四面體ABCD的體積的最大值,由于底面積SABC不變,高最大時體積最大,
所以,DQ與面ABC垂直時體積最大,最大值為 ×SABC×DQ= ,
SABC= ACBQ= =2.
× ×DQ= ,∴DQ=2,如圖.
設(shè)球心為O,半徑為R,則在直角△AQO中,
OA2=AQ2+OQ2 , 即R2=( 2+(2﹣R)2 , ∴R=
則這個球的表面積為:S=4π( 2=9π;
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路汽車的車流量y(千輛/h)與汽車的平均速度v(km/h)之間的函數(shù)關(guān)系式為 . (I)若要求在該段時間內(nèi)車流量超過2千輛/h,則汽車在平均速度應(yīng)在什么范圍內(nèi)?
(II)在該時段內(nèi),當(dāng)汽車的平均速度v為多少時,車流量最大?最大車流量為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓M與圓C1:(x+4)2+y2=2外切,與圓C2:(x﹣4)2+y2=2內(nèi)切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=(
A.0
B.﹣100
C.100
D.10200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結(jié)果如下:
(Ⅰ)在4月份任取一天,估計西安市在該天不下雨的概率;
(Ⅱ)西安市某學(xué)校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)2cosxcossin2xsinxcosx.

(1)f(x)的最小正周期;

(2)若關(guān)于x的方程x上有兩個不同的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面為矩形,PA⊥平面ABCD,PA=AB=2,AD=1,點M為PC中點,過A、M的平面α與此四棱錐的面相交,交線圍成一個四邊形,且平面α⊥平面PBC.

(1)在圖中畫出這個四邊形(不必說出畫法和理由);
(2)求平面α與平面ABM所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比較f(x)與g(x)的大;
(2)解不等式f(x)≤0.

查看答案和解析>>

同步練習(xí)冊答案