已知函數(shù)f(x)=|log2x|,正實(shí)數(shù)m,n滿足m<n,且f(m)=f(n),若f(x)在區(qū)間[m,n]上的最大值為2,則m+n=( 。
A、
5
2
B、
9
4
C、
2
2
+
2
D、
17
4
考點(diǎn):對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可知0<m<1<n,以及mn=1,再f(x)在區(qū)間[m,n]上的最大值為2可得出f(m)=2求出m,故可得m+n的值.
解答: 解:由對數(shù)函數(shù)的性質(zhì)知
∵f(x)=|log2x|正實(shí)數(shù)m、n滿足m<n,且f(m)=f(n),
∴0<m<1<n,以及mn=1,
又函數(shù)在區(qū)間[m,n]上的最大值為2,由于f(m)=f(n),
故可得f(m)=2,即|log2m|=2,即log2m=-2,即m=
1
4
,
可得n=4,
則m+n=
17
4

故選D.
點(diǎn)評:本題考查對數(shù)函數(shù)的值域與最值,求解本題的關(guān)鍵是根據(jù)對數(shù)函數(shù)的性質(zhì)判斷出0<m<1<n,以及mn=1及f(x)在區(qū)間[m,n]上的最大值的位置.根據(jù)題設(shè)條件靈活判斷對解題很重要.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面命題中,正確命題的個數(shù)為( 。
①命題:“若x2-2x-3=0,則x=3”的逆否命題為:“若x≠3,則x2-2x-3≠0”;
②命題:“存在x∈R,使x-2>lgx”的否定是“任意x∈R,x-2≤lgx”;
③“點(diǎn)M在曲線y2=4x上”是“點(diǎn)M的坐標(biāo)滿足方程y=-2
x
”的必要不充分條件;
④設(shè){an}是等比數(shù)列,則“a1<a2<a3”是“數(shù)列{an}是遞增數(shù)列”的充要條件.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù),則loga2<0”的逆否命題是( 。
A、若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)不是減函數(shù)
B、若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)不是減函數(shù)
C、若loga2<0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù)
D、若loga2≥0,則函數(shù)f(x)=logax(a>0,a≠1)在其定義域內(nèi)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y是兩個具有線性相關(guān)關(guān)系的變量,現(xiàn)有這兩個變量的十個樣本點(diǎn)(x1,y1)(x2,y2),…,(x10,y10),同學(xué)甲利用最小二乘法得到回歸直線l1:y=bx+a,同學(xué)乙將十個樣本點(diǎn)中的兩個點(diǎn)連起來得到擬合直線l2:y=dx+c,則下列判斷一定正確的是( 。
A、
10
i=1
(yi-bxi-a)2
10
i=1
(yi-dxi-c)2
B、
10
i=1
(yi-bxi-a)2
10
i=1
(yi-dxi-c)2
C、
10
i=1
|yi-bxi-a|
10
i=1
|yi-dxi-c|
D、
10
i=1
|yi-bxi-a|
10
i=1
|yi-dxi-c|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)滿足:對任意x,y∈(-1,1),都有f(x)+f(y)=f(
x+y
1+xy
),求證:f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時拋擲三枚均勻的硬幣,均為正面向上的概率為( 。
A、
1
8
B、
3
8
C、
5
8
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若|cosθ|=-cosθ,且tanθ<0,試判斷
sin(cosθ)
cos(sinθ)
的符號;
(2)若tan(cosθ)•tan(sinθ)>0,試求出θ所在象限,并用圖形表示
θ
2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)C為坐標(biāo)軸上的一點(diǎn),圓C與圓M:(x-2)2+(y+2)2=r2外切與點(diǎn)(1,-1),圓C與直線L:3x+4y-5=0交于AB兩點(diǎn)
(1)求圓C的方程;
(2)設(shè)E(異于AB)是圓C上的任意一點(diǎn),求△ABE的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x(x>0)
3x(x≤0)
,則f[f(
1
4
)]=( 。
A、9
B、-
1
9
C、-9
D、
1
9

查看答案和解析>>

同步練習(xí)冊答案