【題目】下圖是某機(jī)械零件的幾何結(jié)構(gòu),該幾何體是由兩個(gè)相同的直四棱柱組合而成的,且前后,左右、上下均對(duì)稱(chēng),每個(gè)四棱柱的底面都是邊長(zhǎng)為2的正方形,高為4,且兩個(gè)四棱柱的側(cè)棱互相垂直.則這個(gè)幾何體的體積為________.

【答案】

【解析】

該幾何體體積等于兩個(gè)四棱柱的體積和減去兩個(gè)四棱柱交叉部分的體積,根據(jù)直觀圖分別進(jìn)行求解即可.

該幾何體的直觀圖如圖所示,

該幾何體的體積為兩個(gè)四棱柱的體積和減去兩個(gè)四棱柱交叉部分的體積.

兩個(gè)四棱柱的體積和為.

交叉部分的體積為四棱錐的體積的2.

在等腰中,邊上的高為2,則

由該幾何體前后,左右上下均對(duì)稱(chēng),知四邊形為邊長(zhǎng)為的菱形.

設(shè)的中點(diǎn)為,連接易證即為四棱錐的高,

中,

所以

因?yàn)?/span>,所以,

所以求體積為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長(zhǎng)為2的正方形,,且.

1)證明:平面平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的左、右焦點(diǎn)分別為,軸,直線軸于點(diǎn),為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作兩條直線與橢圓分別交于且使軸,如圖,問(wèn)四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】馬林梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P1(其中p是素?cái)?shù))的素?cái)?shù),稱(chēng)為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),aR.

1)若函數(shù)fx)在x1處的切線為y2x+b,求a,b的值;

2)記gx)=fx+ax,若函數(shù)gx)在區(qū)間(0,)上有最小值,求實(shí)數(shù)a的取值范圍;

3)當(dāng)a0時(shí),關(guān)于x的方程fx)=bx2有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】截至2019年,由新華社《瞭望東方周刊》與瞭望智庫(kù)共同主辦的"中國(guó)最具幸福感城市"調(diào)查推選活動(dòng)已連續(xù)成功舉辦12年,累計(jì)推選出60余座幸福城市,全國(guó)約9億多人次參與調(diào)查,使"城市幸福感"概念深入人心.為了便于對(duì)某城市的"城市幸福感"指數(shù)進(jìn)行研究,現(xiàn)從該市抽取若干人進(jìn)行調(diào)查,繪制成如下不完整的2×2列聯(lián)表(數(shù)據(jù)單位:).

總計(jì)

非常幸福

11

15

比較幸福

9

總計(jì)

30

1)將列聯(lián)表補(bǔ)充完整,并據(jù)此判斷是否有90%的把握認(rèn)為城市幸福感指數(shù)與性別有關(guān);

2)若感覺(jué)"非常幸福"2分,"比較幸福"1分,從上表男性中隨機(jī)抽取3人,記3人得分之和為,求的分布列,并根據(jù)分布列求的概率

:,其中.

0. 10

0. 05

0. 010

0.001

2.706

3.841

6. 635

10. 828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),離心率為,為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè),為橢圓上的三點(diǎn),交于點(diǎn),且,當(dāng)的中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由團(tuán)中央學(xué)校部、全國(guó)學(xué)聯(lián)秘書(shū)處、中國(guó)青年報(bào)社共同舉辦的2018年度全國(guó)“最美中學(xué)生“尋訪活動(dòng)結(jié)果出爐啦,此項(xiàng)活動(dòng)于20186月啟動(dòng),面向全國(guó)中學(xué)在校學(xué)生,通過(guò)投票方式尋訪一批在熱愛(ài)祖國(guó)、勤奮學(xué)習(xí)、熱心助人、見(jiàn)義勇為等方面表現(xiàn)突出、自覺(jué)樹(shù)立和踐行社會(huì)主義核心價(jià)值觀的“最美中學(xué)生”.現(xiàn)隨機(jī)抽取了30名學(xué)生的票數(shù),線成如圖所示的莖葉圖,若規(guī)定票數(shù)在65票以上(包括65票)定義為風(fēng)華組.票數(shù)在65票以下(不包括65票)的學(xué)生定義為青春組.

(Ⅰ)在這30名學(xué)生中,青春組學(xué)生中有男生7人,風(fēng)華組學(xué)生中有女生12人,試問(wèn)有沒(méi)有的把握認(rèn)為票數(shù)分在青春組或風(fēng)華組與性別有關(guān);

(Ⅱ)如果用分層抽樣的方法從青春組和風(fēng)華組中抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人,那么至少有1人在青春組的概率是多少?

(Ⅲ)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)選取4人,用表示所選4人中青春組的人數(shù),試寫(xiě)出的分布列,并求出的數(shù)學(xué)期望.

附:;其中

獨(dú)立性檢驗(yàn)臨界表:

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案