定義在(-∞,+∞)上的奇函數(shù)f(x)為增函數(shù),偶函數(shù)g(x)在區(qū)間[0,+∞)上的圖象與f(x)的圖象重合,設(shè)a>b>0,給出下列不等式,其中成立的是
①f(b)-f(a)>g(a)-g(-b)
②f(b)-f(-a)<g(a)-g(-b)
③f(a)-f(-b)>g(b)-g(-a)
④f(a)-f(-b)<g(b)-g(-a).


  1. A.
    ①與④
  2. B.
    ②與③
  3. C.
    ①與③
  4. D.
    ②與④
C
由f(x)是奇函數(shù),g(x)是偶函數(shù),及在[0,+∞)上g(x)與f(x)的圖象重合,可把四個(gè)不等式化簡(jiǎn)為:①f(b)>0;②f(b)<0;③f(a)>0;④f(a)<0.另一方面,由f(x)是奇函數(shù)且在(0,+∞)上是增函數(shù),知f(0)=0.注意到a>b>0,于是f(b)>0,f(a)>0,也就是①與③成立,故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、定義在R上的函數(shù)f(x)最小正周期為5,且f(1)=1,則f(log264)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
3
2
,0)時(shí)
,f(x)=2-x+1則f(8)=( 。
A、4
B、2
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)是定義在R上的增函數(shù),則不等式f(x)>f[8(x-2)]的解集是
{x|x<
16
7
}
{x|x<
16
7
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),滿足f(-
3
2
+x)=f(
3
2
+x)
.當(dāng)x∈(0,
3
2
)
時(shí),f(x)=ln(x2-x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點(diǎn)個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在[-2013,2013]上的函數(shù)f(x)滿足:對(duì)于任意的x1,x2∈[-2013,2013],有f(x1+x2)=f(x1)+f(x2)-2012,且x>0時(shí),有f(x)>2012,f(x)的最大、小值分別為M、N,則M+N的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案