(2008•宣武區(qū)一模)編號(hào)為1、2、3、4、5的五個(gè)人分別去坐編號(hào)為1、2、3、4、5的五個(gè)座位,其中有且只有兩個(gè)人的編號(hào)與座位號(hào)一致的做法是( 。
分析:根據(jù)題意,首先從5個(gè)號(hào)碼中,選出兩個(gè)號(hào)碼,使其編號(hào)與座位號(hào)一致,由組合數(shù)公式可得情況數(shù)目,再分析其余的三個(gè)座位與人的編號(hào)不同的情況數(shù)目,易得第一個(gè)人有兩種選擇,另外兩個(gè)人的位置確定,共有2種結(jié)果;由分步計(jì)數(shù)原理相乘得到結(jié)果.
解答:解:根據(jù)題意,先確定編號(hào)與座位號(hào)相同的兩人,有C52=10種情況,
剩下的三人編號(hào)與座位號(hào)都不一致,第一個(gè)人有2種坐法,第二、三個(gè)人都有1種坐法,共有2×1×1=2種坐法,
則一共有10×2=20種坐法;
故選B.
點(diǎn)評(píng):本題考查組合公式以及分步計(jì)數(shù)原理的運(yùn)用,易錯(cuò)點(diǎn)為當(dāng)兩個(gè)相同的號(hào)碼確定以后,其余的三個(gè)號(hào)碼不同的排法共有2種結(jié)果.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•宣武區(qū)一模)已知向量
a
=(x,y),
b
=(-1,2 ),且
a
+
b
=(1,3),則|
a
|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•宣武區(qū)一模)如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB
(1)求證:AB⊥平面PCB;
(2)求異面直線AP與BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•宣武區(qū)一模)在等差數(shù)列{an}中,已知a1=
13
,a2+a5=4,an=3,則n
=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•宣武區(qū)一模)設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則“a1<0且0<q<1”是“對(duì)于任意n∈N*都有an+1>an”的 ( 。

查看答案和解析>>

同步練習(xí)冊答案