在△ABC中,B(-2,0),C(2,0),A(x,y),給出△ABC滿(mǎn)足的條件,就能得到動(dòng)點(diǎn)A的軌跡方程,下表給出了一些條件及方程:
則滿(mǎn)足條件①、②、③的軌跡方程分別為    (用代號(hào)C1、C2、C3填入).
條  件方  程
①△ABC的周長(zhǎng)為10C1:y2=25
②△ABC的面積為10C2:x2+y2=4(y≠0)
③△ABC中,∠A=90°C3
【答案】分析:根據(jù)題意,依次分析可得,①中可轉(zhuǎn)化為A點(diǎn)到B、C兩點(diǎn)距離之和為常數(shù),符合橢圓的定義,利用定義法求軌跡方程;②中利用三角形面積公式可知A點(diǎn)到BC距離為常數(shù),軌跡為兩條直線(xiàn);③中∠A=90°,可用斜率或向量處理.
解答:解:①△ABC的周長(zhǎng)為10,即AB+AC+BC=10,而B(niǎo)C=4,所以AB+AC=6>BC,故動(dòng)點(diǎn)A的軌跡為橢圓,與C3對(duì)應(yīng);
②△ABC的面積為10,所以BC•|y|=10,|y|=5,與C1對(duì)應(yīng),
③∠A=90°,故=(-2-x,-y)(2-x,-y)=x2+y2-4=0,與C2對(duì)應(yīng).
故選C3C1C2
點(diǎn)評(píng):本題考查直接法、定義法求軌跡方程,屬基本題型、基本方法的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠B=90°,AC=
15
2
,D,E兩點(diǎn)分別在AB,AC上.使
AD
DB
=
AE
EC
=2,DE=3.將△ABC沿DE折成直二面角,則二面角A-EC-B的余弦值為( 。
A、
3
22
22
B、
5
22
22
C、
3
34
34
D、
5
34
34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3,則AB的長(zhǎng)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠B=120°,AB=2
3
,AC=6,則∠C為
30°
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列五個(gè)命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題.
②在平面內(nèi),F(xiàn)1、F2是定點(diǎn),丨F1F2丨=6,動(dòng)點(diǎn)M滿(mǎn)足丨MF1丨-丨MF2丨=4,則點(diǎn)M的軌跡是雙曲線(xiàn).
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.
④“若-3<m<5,則方程
x2
5-m
+
y2
m+3
=1是橢圓”.
⑤已知向量
a
b
,
c
是空間的一個(gè)基底,則向量
a
+
b
,
a
-
b
c
也是空間的一個(gè)基底.
⑥橢圓
x2
25
+
y2
9
=1上一點(diǎn)P到一個(gè)焦點(diǎn)的距離為5,則P到另一個(gè)焦點(diǎn)的距離為5.
其中真命題的序號(hào)是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠B=
π
3
,三邊長(zhǎng)a,b,c成等差數(shù)列,且a,
6
,c成等比數(shù)列,則b的值是( 。
A、
2
B、
3
C、
5
D、
6

查看答案和解析>>

同步練習(xí)冊(cè)答案