4.已知0<x<$\frac{π}{2}$,且sin(2x-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$,則sinx+cosx=$\frac{2\sqrt{10}}{5}$.

分析 由x的范圍,可得-$\frac{π}{4}$<2x-$\frac{π}{4}$<0,可得cos(2x-$\frac{π}{4}$)的值,再由sin2x=sin[(2x-$\frac{π}{4}$)+$\frac{π}{4}$],運(yùn)用兩角和的正弦公式,以及sinx+cosx=$\sqrt{(sinx+cosx)^{2}}$,計算即可得到所求值.

解答 解:0<x<$\frac{π}{2}$,且sin(2x-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$,
可得-$\frac{π}{4}$<2x-$\frac{π}{4}$<0,
則cos(2x-$\frac{π}{4}$)=$\sqrt{1-(-\frac{\sqrt{2}}{10})^{2}}$=$\frac{7\sqrt{2}}{10}$,
即有sin2x=sin[(2x-$\frac{π}{4}$)+$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$[sin(2x-$\frac{π}{4}$)+cos(2x-$\frac{π}{4}$)]
=$\frac{\sqrt{2}}{2}$×(-$\frac{\sqrt{2}}{10}$+$\frac{7\sqrt{2}}{10}$)=$\frac{3}{5}$,
則sinx+cosx=$\sqrt{(sinx+cosx)^{2}}$=$\sqrt{1+sin2x}$=$\sqrt{1+\frac{3}{5}}$
=$\frac{2\sqrt{10}}{5}$.
故答案為:$\frac{2\sqrt{10}}{5}$.

點(diǎn)評 本題考查三角函數(shù)的求值,考查兩角和的正弦公式和同角基本關(guān)系式,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合M={ b,1},N={ c,1,2},M⊆N,若b,c∈{2,3,4,5,6,7,8,9}則方程x2+bx+c=0有實根的概率為( 。
A.$\frac{5}{7}$B.$\frac{4}{7}$C.$\frac{3}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=ax-1(a>0且a≠1)恒過的定點(diǎn)坐標(biāo)為(0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},則M的非空真子集的個數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.本學(xué)期王老師任教兩個平行班高三A班、高三B班,兩個班都是50個學(xué)生,如圖圖反映的是兩個班在本學(xué)期5次數(shù)學(xué)測試中的班級平均分對比,根據(jù)圖表,不正確的結(jié)論是( 。
A.A班的數(shù)學(xué)成績平均水平好于B班
B.B班的數(shù)學(xué)成績沒有A班穩(wěn)定
C.下次考試B班的數(shù)學(xué)平均分要高于A班
D.在第1次考試中,A、B兩個班的總平均分為98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,D是BC的中點(diǎn),向量$\overrightarrow{AB}$=a,向量$\overrightarrow{AC}$=b,則向量$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$).(用向量a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知奇函數(shù)$f(x)=a-\frac{1}{{{2^x}+1}}\;,\;\;x∈({-1\;,\;\;1})$.
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)f(x)滿足f(x-1)+f(x)<0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z=1+i,則$\frac{z^2}{i}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.拋物線y=ax2的準(zhǔn)線方程是y=-1,則a的值為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案