求過直線x+y+4=0與x-y+2=0的交點,且平行于直線x-2y=0的直線方程。

解:由,解得,
即直線x+y+4=0與x-y+2=0的交點為(-3,-1),
因為所求直線平行于直線x-2y=0,設所求直線x-2y+m=0,
則-3-2(-1)+m=0,得m=1,
即x-2y+1=0。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

矩形ABCD的對角線AC、BD相交于點M (2,0),AB邊所在直線的方程為:x-3y-6=0.若點N(1,-5)在直線AD上.
(1)求點A的坐標及矩形ABCD外接圓的方程;
(2)過直線x-y+4=0上一點P作(1)中所求圓的切線,設切點為E、F,求四邊形PEMF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求過直線x+y+4=0與x-y+2=0的交點,且平行于直線 x-2y=0的直線方程.
(2)設直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點A、B,求弦AB的長及其垂直平分線的方程.
(3)過點P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)求過直線x+y+4=0與x-y+2=0的交點,且平行于直線 x-2y=0的直線方程.
(2)設直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點A、B,求弦AB的長及其垂直平分線的方程.
(3)過點P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年浙江省溫州市瑞安五中高一(下)模塊月考數(shù)學試卷(必修2)(解析版) 題型:解答題

(1)求過直線x+y+4=0與x-y+2=0的交點,且平行于直線 x-2y=0的直線方程.
(2)設直線4x+3y+1=0和圓x2+y2-2x-3=0相交于點A、B,求弦AB的長及其垂直平分線的方程.
(3)過點P(3,0)有一條直線l,它夾在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段恰被P點平分,求直線l的方程.

查看答案和解析>>

同步練習冊答案