在制定投資計(jì)劃時(shí),不僅要考慮能獲得的盈利,而且還要考慮可能出現(xiàn)的虧損.現(xiàn)有甲、乙兩個(gè)項(xiàng)目進(jìn)行招商,要求兩個(gè)項(xiàng)目投資總額不能低于8萬元,根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利率分別為80%和50%,可能的最大虧損分別為40%和20%.張某現(xiàn)有資金10萬元準(zhǔn)備投資這兩個(gè)項(xiàng)目,且要求可能的資金虧損不超過2.6萬元.設(shè)張某對甲、乙兩個(gè)項(xiàng)目投資金額分別為x萬元和y萬元,可能最大盈利為S萬元.問:張某對甲、乙兩個(gè)項(xiàng)目各投資多少萬元,才能使可能的盈利最大?并求出盈利的最大值.
考點(diǎn):簡單線性規(guī)劃的應(yīng)用
專題:不等式的解法及應(yīng)用
分析:根據(jù)條件建立約束條件,利用數(shù)形結(jié)合,結(jié)合線性規(guī)劃的應(yīng)用即可得到結(jié)論.
解答: 解:設(shè)張某對甲項(xiàng)目投資為x萬元,對乙項(xiàng)目投資為y萬元,可能最大盈利為S萬元,
由題意可知,約束條件為
8≤x+y≤10
0.4x+0.2y≤2.6
x≥0,y≥0
,
則S=0.8x+0.5y,即y=-1.6x+2S,
畫出約束條件的可行域如圖:
平移直線y=-1.6x+2S,
右圖象可知當(dāng)直線y=-1.6x+2S經(jīng)過點(diǎn)M時(shí),直線的截距最大,此時(shí)S最大,
x+y=10
0.4x+0.2y=2.6
,解得
x=3
y=7
,
此時(shí)S=0.8×3+0.5×7=5.9,
答:張某對甲投資3萬元,乙兩個(gè)項(xiàng)目投資7萬元,才能使可能的盈利最大.盈利的最大值為5.9萬元.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)條件建立約束條件和目標(biāo)函數(shù),利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-x+c(x∈R),下列結(jié)論錯誤的是( 。
A、函數(shù)f(x)一定存在極大值和極小值
B、若函數(shù)f(x)在(-∞,x1),(x2,+∞)上是增函數(shù),則x2-x1
2
3
3
C、函數(shù)f(x)的圖象是中心對稱圖形
D、函數(shù)f(x)一定存在三個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,點(diǎn)M為PC的中點(diǎn).
(1)求證:PA∥平面BMD;
(2)若PD⊥平面ABCD,∠BCD=60°,∠ABD=30°,求證:AD⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PD⊥平面ABCD,底面是邊長是1的正方形,M,N分別是AB,PC的中點(diǎn);
(1)求證:MN∥平面PAD;
(2)求證:BC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形ABCD中,E、F分別為對角線BD、AC中點(diǎn),若BC=AD=2EF,求直線EF與AD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,-4tanα),
b
=(4,5cosα).
(1)若
a
b
,求sinα的值;
(2)若
a
b
,且α∈(0,
π
2
),求cos(2α-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2sin
x
2
,1),
b
=(cos
x
2
-
3
sin
x
2
,1),f(x)=
a
b
+m.
(1)求f(x)在[0,2π]上的單調(diào)區(qū)間;
(2)當(dāng)x∈[0,2π]時(shí),f(x)的最小值為2,求f(x)≥2成立的x的取值集合;
(3)若存在實(shí)數(shù)a,b,c,使得a[f(x)-m]+b[f(x-c)-m]=1,對任意x∈R恒成立,求
b
acosC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體ABCD-A1B1C1D1中,AB=BC=2a,AA1=a,E,F(xiàn)分別是A1B1和BB1的中點(diǎn),求EF與AD1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)1+(1+2)+(1+2+22)+…+(1+2+22+…+2n-1)=
 

(2)1×2+2×3+…(n-1)×n=
 

(3)
1
2
+
3
22
+…+
2n-1
2n
=
 

查看答案和解析>>

同步練習(xí)冊答案