已知?jiǎng)狱c(diǎn)M到橢圓
x2
25
+
y2
9
=1
的右焦點(diǎn)的距離與到直線x=-4的距離相等,則動(dòng)點(diǎn)M的軌跡方程是______.
∵橢圓的方程是
x2
25
+
y2
9
=1
,
∴a2=25,b2=9,可得c=
a2-b2
=4
因此,橢圓
x2
25
+
y2
9
=1
的右焦點(diǎn)為F(4,0)
∵動(dòng)點(diǎn)M到為F(4,0)的距離與到直線x=-4的距離相等,
∴M的軌跡是以F為焦點(diǎn),x=-4為準(zhǔn)線的拋物線
設(shè)拋物線方程為y2=2px(p>0),根據(jù)
p
2
=4,得2p=16
∴拋物線方程為y2=16x,即為動(dòng)點(diǎn)M的軌跡方程
故答案為:y2=16x
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是( 。
①動(dòng)點(diǎn)M至兩定點(diǎn)A、B的距離之比為常數(shù)λ(λ>0且λ≠1).則動(dòng)點(diǎn)M的軌跡是圓.
②橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,則b=c(c
為半焦距).
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦點(diǎn)到漸近線的距離為b.
④已知拋物線y2=2px上兩點(diǎn)A(x1,y1),B(x2,y2)且OA⊥OB(O為原點(diǎn)),則y1y2=-p2
A、②③④B、①④
C、①②③D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①動(dòng)點(diǎn)M到兩定點(diǎn)A、B的距離之比為常數(shù)λ(λ>0且λ≠1),則動(dòng)點(diǎn)M的軌跡是圓;
②橢圓
x2
2b2
+
y2
b2
=1
的離心率是
2
2
;
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦點(diǎn)到漸近線的距離是b;
④已知拋物線y2=2px上兩點(diǎn)A(x1,y1)、B(x2,y2),且OA⊥OB(O是坐標(biāo)原點(diǎn)),則y1y2=-p2
其中正確命題的序號(hào)是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題
①若兩直線平行,則兩直線斜率相等.
②動(dòng)點(diǎn)M至兩定點(diǎn)A、B的距離之比為常數(shù)λ(λ>0且λ≠1).則動(dòng)點(diǎn)M的軌跡是圓.
③若橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率  e=
2
2
,則  b=c  (c為半焦距)

④雙曲線
x2
a2
-
y2
b2
=1(a>b>0)
的焦點(diǎn)到漸近線的距離為b.
⑤已知拋物線y2=2px上兩點(diǎn)A(x1,y1),B(x2,y2),且OA⊥OB(O為原點(diǎn)),則y1y2=-p2
其中正確命題的序號(hào)是
②③④
②③④
.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個(gè)動(dòng)點(diǎn),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A、B分別為橢圓的一個(gè)長(zhǎng)軸端點(diǎn)與短軸的端點(diǎn).當(dāng)MF2⊥F1F2時(shí),原點(diǎn)O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關(guān)系式;
(2)當(dāng)點(diǎn)M在橢圓上變化時(shí),求證:∠F1MF2的最大值為
π
2
;
(3)設(shè)圓x2+y2=r2(0<r<b),G是圓上任意一點(diǎn),過(guò)G作圓的切線交橢圓于Q1,Q2兩點(diǎn),當(dāng)OQ1⊥OQ2時(shí),求r的值.(用b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn),過(guò)F1的直線l交C于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為8,C上的動(dòng)點(diǎn)到焦點(diǎn)距離的最小值為1,
(1)求橢圓C的方程;
(2)若點(diǎn)P是橢圓C上不與橢圓頂點(diǎn)重合的任意一點(diǎn),點(diǎn)M是橢圓C上不與橢圓頂點(diǎn)重合且異于點(diǎn)P的任意一點(diǎn),點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)是點(diǎn)N,直線MP,NP分別交x軸于點(diǎn)E(x1,0),點(diǎn)F(x2,0),探究x1•x2是否為定值,若為定值,求出該定值,若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案