(1)三棱柱的側(cè)面展開圖的對角線長;
(2)該最短路線的長及的值;
(3)平面C1MB與平面ABC所成二面角(銳角)的大小.
解:(1)正三棱柱ABC—A1B1C1的側(cè)面展開圖是長為6,寬為2的矩形,其對角線長為.
(2)如圖,將側(cè)面AA1B1B繞棱AA1旋轉(zhuǎn)120°使其與側(cè)面AA1C1C在同一平面上,點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的位置,連結(jié)DC1交AA1于點(diǎn)M,則DC1就是由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過棱AA1到頂點(diǎn)C1的最短路線,其長為.
∵△DMA≌△C1MA1,∴AM=A1M.
故=1.
(3)連結(jié)DB、C1B,則DB就是平面C1MB與平面ABC的交線,在△DCB中,
∵∠DBC=∠CBA+∠ABD=60°+30°=90°,
∴CB⊥DB.
又C1C⊥平面CBD,
由三垂線定理得C1B⊥DB.
∴∠C1BC就是平面C1MB與平面ABC所成二面角的平面角(銳角).
∵側(cè)面C1B1BC是正方形,
∴∠C1BC=45°.
故平面C1MB與平面ABC所成的二面角(銳角)為45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com