如圖,某林場(chǎng)為了及時(shí)發(fā)現(xiàn)火情,在林場(chǎng)中設(shè)立了兩個(gè)觀測(cè)點(diǎn)A和B,某日兩個(gè)觀測(cè)點(diǎn)的林場(chǎng)人員分別觀測(cè)到C處有險(xiǎn)情.在A處觀測(cè)到火情發(fā)生在北偏西45°方向,在B點(diǎn)觀測(cè)火場(chǎng)C在北偏西75°方向,已知B在A的正東方向10km處,那么火場(chǎng)C到觀測(cè)點(diǎn)A的距離為
 
km.
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:根據(jù)題意求出∠ABC的度數(shù),在三角形ABC中,利用正弦定理即可求出AC的長(zhǎng).
解答: 解:如圖所示,∠ABC=15°,∠C=30°,
在△ABC中,AB=10km,sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=
2
2
×
3
2
-
2
2
×
1
2
=
6
-
2
4
,
由正弦定理得:
AC
sin∠ABC
=
AB
sinC
,
∴AC=
ABsin∠ABC
sinC
=
10×sin15°
sin30°
=
10×
6
-
2
4
1
2
=5(
6
-
2
)km,
則火場(chǎng)C到觀測(cè)點(diǎn)A的距離為5(
6
-
2
)km.
故答案為:5(
6
-
2
點(diǎn)評(píng):此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,A(3,0),B(0,3),C(2cosθ,2sinθ)
(1)若
AC
BC
,求sin2θ的值;
(2)
AC
BC
能否共線?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過(guò)兩點(diǎn)A(6,0),B(-2,2),且圓心在直線2x-y=1上,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=sin2x-2sinxcosx,則f(
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=1+loga(2-x)(a>0,a≠1)的圖象所過(guò)定點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程)已知曲線C的極坐標(biāo)方程ρ=-2sinθ,直線l的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(t為參數(shù)),則曲線C上的點(diǎn)到直線l的最短距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪函數(shù)f(x)=(m2-2m-2)xm+
1
2
m2
在(0,+∞)是增函數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若圓C的圓心在第一象限,圓C與x軸相交于A(1,0)、B(3,0)兩點(diǎn),且與直線x-y+1=0相切,則圓C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,過(guò)點(diǎn)A作AH⊥BC,垂足為H,BH=3,HC=2,則(
AB
3
+
AC
2
)•
BC
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案