橢圓的兩焦點分別為(0,-1)、(0,1),直線y=4是橢圓的一條準線.設點P在橢圓上,且,求的最大值和最小值分別是

A.,

B.,

C.,

D.,

答案:A
解析:

設橢圓方程為(a>b>0),

則由,

得a=2,c=1,

故橢圓方程為,

∵P在橢圓上,故

由平面幾何知識得

,

即m≤2,∴m∈[1,2],

,

,且,則

∴函數(shù)f(x)在[1,2]上單調遞增,

∴當m=1時,原式取最大值,當m=2時,原式取最小值


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的方程
 x2 
4
+
y2
3
=1,橢圓的兩焦點分別為F1,F(xiàn)2,點P是其上的動點,當△PF1F2內(nèi)切圓的面積取最大值時,內(nèi)切圓圓心的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點的坐標分別為A(-2,0),B(2,0),離心率e=
1
2

(Ⅰ)求橢圓C的方程:
(Ⅱ)設橢圓的兩焦點分別為F1,F(xiàn)2,點P是其上的動點,
(1)當△PF1F2內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標;
(2)若直線l:y=k(x-1)(k≠0)與橢圓交于M、N兩點,證明直線AM與直線BN的交點在直線x=4上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓的兩焦點分別為(0,-2),(0,2),兩準線間的距離為13,則橢圓的方程為
y2
13
+
x2
9
=1
y2
13
+
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點的坐標分別為A(-2,0),B(2,0),離心率e=
1
2

(Ⅰ)求橢圓C的方程:
(Ⅱ)設橢圓的兩焦點分別為F1,F(xiàn)2,若直線l:y=k(x-1)(k≠0)與橢圓交于M、N兩點,證明直線AM與直線BN的交點在直線x=4上.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省高三上學期期末考試數(shù)學文卷 題型:解答題

 

(本小題滿分12分)已知橢圓C:的左、右頂點的坐標分別為,,離心率。

(Ⅰ)求橢圓C的方程:

(Ⅱ)設橢圓的兩焦點分別為,,若直線與橢圓交于兩點,證明直線與直線的交點在直線上。

 

查看答案和解析>>

同步練習冊答案