已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若,使()成立,求實(shí)數(shù)a的取值范圍.
(Ⅰ)單調(diào)減區(qū)間是,增區(qū)間是.;(Ⅱ);(Ⅲ).
【解析】
試題分析:(1)先求,解不等式并和定義域求交集,得的單調(diào)遞增區(qū)間;解不等式并和定義域求交集,得的單調(diào)遞減區(qū)間;(2)等價(jià)于在時(shí)恒成立,即,故,得實(shí)數(shù)a的取值范圍;(3)由特稱量詞的含義知,在區(qū)間內(nèi)存在兩個(gè)獨(dú)立變量,使得已知不等式成立,等價(jià)于的最小值小于等于的最大值,分別求兩個(gè)函數(shù)的最小值和最大值,建立實(shí)數(shù)的不等式,進(jìn)而求的范圍.
試題解析:由已知函數(shù)的定義域均為,且.
(Ⅰ)函數(shù),當(dāng)且時(shí),;當(dāng)時(shí),.
所以函數(shù)的單調(diào)減區(qū)間是,增區(qū)間是.
(Ⅱ)因f(x)在上為減函數(shù),故在上恒成立.
所以當(dāng)時(shí),.又,故當(dāng),即時(shí),.所以于是,故a的最小值為.
(Ⅲ)命題“若使成立”等價(jià)于“當(dāng)時(shí),
有”.
由(Ⅱ),當(dāng)時(shí),,. 問(wèn)題等價(jià)于:“當(dāng)時(shí),有”.
當(dāng)時(shí),由(Ⅱ),在上為減函數(shù),則=,故.
當(dāng)0<時(shí),由于在上為增函數(shù),故的值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030404272461524802/SYS201403040428055058924499_DA.files/image055.png">,即.由的單調(diào)性和值域知,唯一,使,且滿足:當(dāng)時(shí),,為減函數(shù);當(dāng)時(shí),,為增函數(shù);所以,=,.所以,,與矛盾,不合題意.綜上,得.
考點(diǎn):1、導(dǎo)數(shù)在單調(diào)性上的應(yīng)用;2、利用導(dǎo)數(shù)求函數(shù)的極值和最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若對(duì)任意,函數(shù)在上都有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省東莞市教育局教研室高三上學(xué)期數(shù)學(xué)文卷 題型:解答題
(本小題滿分分)
已知函數(shù).
(1)求函數(shù)的最大值;
(2)在中,,角滿足,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com