【題目】某公司為確定下一年投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年利潤(rùn)y(單位:萬元)的影響,對(duì)近5年的宣傳費(fèi)xi和年利潤(rùn)yi(i=1,2,3,4,5)進(jìn)行了統(tǒng)計(jì),列出了下表:

x(單位:千元)

2

4

7

17

30

y(單位:萬元)

1

2

3

4

5

員工小王和小李分別提供了不同的方案.
(1)小王準(zhǔn)備用線性回歸模型擬合y與x的關(guān)系,請(qǐng)你建立y關(guān)于x的線性回歸方程(系數(shù)精確到0.01);
(2)小李決定選擇對(duì)數(shù)回歸模擬擬合y與x的關(guān)系,得到了回歸方程: =1.450lnx+0.024,并提供了相關(guān)指數(shù)R2=0.995,請(qǐng)用相關(guān)指數(shù)說明選擇哪個(gè)模型更合適,并預(yù)測(cè)年宣傳費(fèi)為4萬元的年利潤(rùn)(精確到0.01)(小王也提供了他的分析數(shù)據(jù) (yi i2=1.15) 參考公式:相關(guān)指數(shù)R2=1﹣
回歸方程 = x+ 中斜率和截距的最小二乘法估計(jì)公式分別為 = , = x,參考數(shù)據(jù):ln40=3.688, =538.

【答案】
(1)解: =12, =3,所以, = ≈0.13, =1.44,

小王建立y關(guān)于x的線性回歸方程為: =0.13x+1.44.


(2)解:據(jù) (yi2=10,所以小王模型的相關(guān)指數(shù)R2=0.89,這個(gè)值比小李模型相關(guān)指數(shù)小,小李模型的擬合度更好,所以選擇小李提供的模型更合適.

當(dāng)x=40 時(shí),由小李模型得 ≈5.37,

預(yù)測(cè)年宣傳費(fèi)為4萬元的年利潤(rùn)為5.37萬元.


【解析】(1) =12, =3,求出回歸系數(shù),可得回歸方程;(2)小王模型的相關(guān)指數(shù)R2=0.89,這個(gè)值比小李模型相關(guān)指數(shù)小,小李模型的擬合度更好,所以選擇小李提供的模型更合適.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時(shí),求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點(diǎn)求證:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,如圓是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:直線mx﹣y+1=0與圓(x﹣2)2+y2=4有公共點(diǎn);設(shè)命題q:實(shí)數(shù)m滿足方程 + =1表示雙曲線.
(1)若“p∧q”為真命題,求實(shí)數(shù)m的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx;g(x)=
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時(shí),f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時(shí),對(duì)于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)

Ⅰ)若是奇函數(shù),求的值.

Ⅱ)當(dāng)時(shí),求函數(shù)上的值域,判斷函數(shù)上是否為有界函數(shù),并說明理由.

Ⅲ)若函數(shù)上是以為上界的函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)時(shí),求函數(shù)f(x)的值域;

(2)若恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, , , 的中點(diǎn),將沿折起,使間的距離為則點(diǎn)到平面的距離為(

A. B. C. 1 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案