設兩個平面α、β,直線l,且lα,lβ,下列三個條件:①l⊥α;②l∥β;③α⊥β,若以其中兩個作為前提,另一個作為結論,則可構成三個命題,這三個命題中正確命題的個數(shù)為
A.3
B.2
C.1
D.0
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年山東省濟南市高三12月質量檢測數(shù)學文卷 題型:解答題
(本小題滿分12分)如圖,AB為圓O的直
徑,點E、F在圓O上,AB∥EF,矩形ABCD
所在的平面和圓O所在的平面垂直,且.
⑴求證:;
⑵設FC的中點為M,求證:;
⑶設平面CBF將幾何體分成的兩個錐體的體積分別為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)在AB上求一點D,使沿折線PDAO修建公路的總造價最;
(2)對于(1)中得到的點D,在DA上求一點E,使沿折線PDEO修建公路的總造價最。
(3)在AB上是否存在兩個不同的點D′,E′,使沿折線.PD′E′O修建公路的總造價小于(2)中得到的最小總造價?證明你的結論.
a)
第19題圖
(文)如圖b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.
(1)求AC1與BC所成角的余弦值;
(2)求二面角C1-BD-C的大。
(3)設M是BD上的點,當DM為何值時,D1M⊥平面A1C1D?并證明你的結論.
第19題圖
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省金華市義烏二中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com