由y=ex,x=0,y=2所圍成的曲邊梯形的面積為( 。
A、
2
1
lnydy
B、
x2
0
exdy
C、
ln2
1
lnydy
D、
2
1
(2-ex)dx
考點(diǎn):定積分的簡(jiǎn)單應(yīng)用
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:畫出圖形,利用定積分的定義求解即可.
解答: 解:由y=ex,x=0,y=2所圍成的曲邊梯形如圖:y=ex,可得x=lny,
曲邊梯形的面積轉(zhuǎn)化為對(duì)y的積分,即
2
1
lnydy.
故選:A.
點(diǎn)評(píng):本題考查定積分的簡(jiǎn)單應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P為曲線y=x3+
3
x+2上任意一點(diǎn),求該曲線在點(diǎn)P處的切線的傾斜角θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題:
①設(shè)隨機(jī)變量ξ服從正態(tài)分布N(2,9),若P(ξ>c)=P(ξ<c-2),則常數(shù)c的值是2;
②若命題“?x0∈R,使得x02+ax0+1≤0成立”為真命題,則實(shí)數(shù)a的取值范圍為(-∞,-2]∪[2,+∞);
③圓(x-1)2+y2=1被直線x-y=0分成兩段圓弧,則較短弧長(zhǎng)與較長(zhǎng)弧長(zhǎng)之比為1:4;
④已知p:x≥k,q:
3
x+1
<1,如果p是q的充分不必要條件,則實(shí)數(shù)k的取值范圍是(2,+∞).
其中真命題的序號(hào)是
 
(把你認(rèn)為真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高三文科(1)班學(xué)生參加“江南十!甭(lián)考,其數(shù)學(xué)成績(jī)(已折合成百分制)的頻率分布直方圖如圖所示,其中成績(jī)分布敬意為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],現(xiàn)已知成績(jī)落在[90,100]的有5人.
(Ⅰ)求該校高三文科(1)班參加“江南十!甭(lián)考的總?cè)藬?shù);
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)該班此次數(shù)學(xué)成績(jī)的平均分(可用中值代替各組數(shù)據(jù)的平均值);
(Ⅲ)現(xiàn)要求從成績(jī)?cè)赱40,50)和[90,100]的學(xué)生共選2人參加某項(xiàng)座談會(huì),求2人來(lái)自于同一分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,0),點(diǎn)M(x,y)為平面區(qū)域
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
上的一個(gè)動(dòng)點(diǎn),則|AM|的最小值是( 。
A、5
B、3
C、2
2
D、
6
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a∈R,P=(4+a2)(9+a2)與Q=24a2的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(x+
3
4=a0+a1x+a2x2+a3x3+a4x4,則(a0+a2+a42-(a1+a32的值為( 。
A、-16
B、16
C、
3
-1
D、
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪函數(shù)y=x m2+2m-3(m∈N)在區(qū)間(0,+∞)上是減函數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|
x-2
x-1
<0},B={x|log2(x-1)<0},那么“x∈A”是“x∈B”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案