已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個(gè)極值點(diǎn),其中m,n∈R,m<0.
(I)求m與n的關(guān)系表達(dá)式;
(II)求f(x)的單調(diào)區(qū)間.
(I)f′(x)=3mx2-6(m+1)x+n,
因?yàn)閤=1是f(x)的一個(gè)極值點(diǎn),
所以f′(1)=0,即3m-6(m+1)+n=0,所以n=3m+6.
(II)由(I)知,
f′(x)=3mx2-6(m+1)x+3m+6=3m(x-1)[x-(1+
2
m
)]

當(dāng)m<0時(shí),有1>1+
2
m
,當(dāng)x變化時(shí),f(x)與f'(x)的變化如下表:
x (-∞,1+
2
m
)
1+
2
m
(1+
2
m
,1)
1 (1,+∞)
f′(x) <0 0 >0 0 <0
f(x) 單調(diào)遞減 極小值 單調(diào)遞增 極大值 單調(diào)遞減
由上表知,當(dāng)m<0時(shí),f(x)在(-∞,1+
2
m
)
單調(diào)遞減,
(1+
2
m
,1)
單調(diào)遞增,(1+∞)單調(diào)遞減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個(gè)極值點(diǎn),其中m,n∈R,m<0.
(Ⅰ)求m與n的關(guān)系表達(dá)式;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[-1,1]時(shí),函數(shù)y=f(x)的圖象上任意一點(diǎn)的切線斜率恒大于3m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

22、已知x=1是函數(shù)f(x)=x3-nx2+3(m+1)x+n+1(m、n∈R,m≠0)的一個(gè)極值點(diǎn).
(1)求m與n的關(guān)系表達(dá)式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知x=1是函數(shù)f(x)=x3-ax(a為參數(shù))的一個(gè)極值點(diǎn).
(1)求a的值;
(2)求x∈[0,2]時(shí),函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個(gè)極值點(diǎn),其中m,n∈R,m≠0
(1)求m與n的關(guān)系式;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)函數(shù)g(x)=
1
e
x2gex-
1
3
x3-x2,φ(x)=
2
3
x3-x2;試比較g(x)與φ(x)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=1是函數(shù)f(x)=x3-ax(a為參數(shù))的一個(gè)極值點(diǎn).
(Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案