對定義域是Df、Dg的函數(shù)y=f(x)、y=g(x),規(guī)定:
函數(shù),
(1)若函數(shù)f(x)=-2x+3,x≥1,g(x)=x-2,x∈R,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的最大值;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設(shè)計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明。
解:(1);
(2)當(dāng)x≥1時,,
,
當(dāng)x<1時,h(x)<-1,
∴當(dāng)時,h(x)取得最大值;
(3)令
,
于是。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=
f(x)g(x),當(dāng)x∈Df且x∈Dg
f(x),當(dāng)x∈Df且x∉Dg
g(x),當(dāng)x∉Df且x∈Dg

(1)若函數(shù)f(x)=
1
x-1
,g(x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設(shè)計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省張家界一中高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=
(1)若函數(shù)f(x)=,g(x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設(shè)計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市會考說明:題目示例(解析版) 題型:解答題

對定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=
(1)若函數(shù)f(x)=,g(x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設(shè)計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005年上海市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=
(1)若函數(shù)f(x)=,g(x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設(shè)計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005年上海市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

對定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=
(1)若函數(shù)f(x)=,g(x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設(shè)計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

同步練習(xí)冊答案