2.天然氣是較為安全的燃氣之一,它不含一氧化碳,也比空氣輕,一旦泄露,立即會向上擴散,不易積累形成爆炸性氣體,安全性較高,其優(yōu)點有:①綠色環(huán)保;②經(jīng)濟實惠;③安全可靠;④改善生活.某市政府為了節(jié)約居民天然氣,計劃在本市試行居民天然氣定額管理,即確定一個居民年用氣量的標準,為了確定一個較為合理的標準,必須先了解全市居民日常用氣量的分布情況,現(xiàn)采用抽樣調(diào)查的方式,獲得了n位居民某年的用氣量(單位:立方米),樣本統(tǒng)計結(jié)果如圖表.
分組頻數(shù)頻率
[0,10) 25 
 
[10,20)
  0.19
 
[20,30)
 50 
 
[30,40)
  0.23
 
[40,50)
  0.18
 
[50,60)
 5 
(1)分布求出n,a,b的值;
(2)若從樣本中年均用氣量在[50,60](單位:立方米)的5位居民中任選2人作進一步的調(diào)查研究,求年均用氣量最多的居民被選中的概率(5位居民的年均用氣量均不相等).

分析 (1)從直方圖中得在[2,3)小組中的頻率,利用頻率分布直方圖中$\frac{50}{n}$=b=0.25,求出b,再利用樣本容量等于頻數(shù)除以頻率得出n,最后求出a處的數(shù);
(2)利用列舉法確定基本事件的個數(shù),根據(jù)古典概率計算公式計算即可.

解答 解:(1)用氣量在[20,30)內(nèi)的頻數(shù)是50,頻率是0.025×10=0.25,則$n=\frac{50}{0.25}=200$.
用氣量在[0,10)內(nèi)的頻數(shù)是$\frac{25}{200}=0.125$,則$b=\frac{0.125}{10}=0.0125$.
用氣量在[50,60]內(nèi)的頻率是$\frac{5}{200}=0.025$,則$a=\frac{0.025}{10}=0.0025$.
(2)設(shè)A,B,C,D,E代表用氣量從多到少的5位居民,
從中任選2位,總的基本事件為AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10個;
包含A的有AB,AC,AD,AE共4個,
所以$P=\frac{4}{10}=\frac{2}{5}$.

點評 本題考查了頻率分布直方圖,考查了根據(jù)直方圖求頻率,根據(jù)古典概率計算公式計算概率.屬于常規(guī)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{mx}{{{x^2}+n}}$(m,n∈R)在x=1處取得極值2.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=ax-lnx,若對任意的${x_1}∈[\frac{1}{2},2]$,總存在唯一的x2∈[$\frac{1}{e^2}$,e](e為自然對數(shù)的底數(shù))使得g(x2)=f(x1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=-$\frac{1}{2}sin(2x-\frac{π}{6})$
(1)求f(x)的單調(diào)區(qū)間
(2)當x∈$[-\frac{π}{12},\frac{2π}{3}]$,求f(x)的最值及對應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓Γ:$\frac{x^2}{a^2}+\frac{{y{\;}^2}}{b^2}=1({a>b>0})$的左、右焦點分別為F1,F(xiàn)2,且|F1F2|>2b點P(0,2)關(guān)于直線y=-x的對稱點在橢圓Γ上,橢圓r的上、下頂點分別為A,B,△AF1F2的面積為$\sqrt{3}$,
(I)求橢圓Γ的方程;
(Ⅱ)如圖,過點P的直線l橢圓Γ相交于兩個不同的點C,D(C在線段PD之間).
(i)求$\overrightarrow{OC}•\overrightarrow{OD}$的取值范圍;
(ii)當AD與BC相交于點Q時,試問:點Q的縱坐標是否是定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2-3t}\\{y=-2+4t}\end{array}\right.$(t為參數(shù)).以坐標原點為極點,以x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρcosθ=tanθ.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標方程;
(Ⅱ)若C1與C2交于A,B兩點,點P的極坐標為$({2\sqrt{2},-\frac{π}{4}})$,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知曲線C上任一點M(x,y)到點E(-1,$\frac{1}{4}$)和直線a:y=-$\frac{1}{4}$的 距離相等,圓D:(x-1)2+(y-$\frac{1}{2}$)2=r2(r>))
(Ⅰ)求曲線C的方程;
(Ⅱ)過點A(-2,1)作曲線C的切線b,并與圓D相切,求半徑r;
(Ⅲ)若曲線C與圓D恰有一個公共點B(x0,(x0+1)2),且在B點處兩曲線的切線為同一直線d,求半徑r.這時,你認為曲線C與圓D共有幾條公切線(不必證明)?(注:公切線是與兩曲線都相切的直線,切點可以不同.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an},S3=6,a9+a11+a13=60,則S13的值為(  )
A.66B.42C.169D.156

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x2+x+1.
(I)解不等式:|f(x+1)-f(x)|-|f(x)-f(x-1)|≤1;
(Ⅱ)求證:$\frac{1}{3}$≤$\frac{f(-x)}{f(x)}$≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法正確的是( 。
A.當f′(x0)=0時,f(x0)為f(x)的極大值B.當f′(x0)=0時,f(x0)為f(x)的極小值
C.當f′(x0)=0時,f(x0)為f(x)的極值D.當f(x0)為f(x)的極值時,f′(x0)=0

查看答案和解析>>

同步練習(xí)冊答案