5.如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)若平面PAD與PBC所成的銳二面角的大小為$\frac{π}{3}$,求線段PD的長(zhǎng)度.

分析 (1)設(shè)PC交DE于點(diǎn)N,連結(jié)MN,MN∥AC,由此能證明AC∥平面MDE.
(2)設(shè)PD=a,(a>0),推導(dǎo)出PD⊥平面ABCD,以D為原點(diǎn),DA,DC,DP所在直線分為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出線段PD的長(zhǎng)度.

解答 證明:(1)設(shè)PC交DE于點(diǎn)N,連結(jié)MN,
在△PAC中,∵M(jìn),N分別是PA,PC的中點(diǎn),
∴MN∥AC,
又AC?平面MDE,MN?平面MDE,
∴AC∥平面MDE.
解:(2)設(shè)PD=a,(a>0),
∵四邊形PDCE是矩形,四邊形ABCD是梯形,
平面PDCE⊥平面ABCD,
∴PD⊥平面ABCD,
又∵∠BAD=∠ADC=90°,
以D為原點(diǎn),DA,DC,DP所在直線分為x,y,z軸,建立空間直角坐標(biāo)系,
則P(0,0,a),B(1,1,0),C(0,2,0),
$\overrightarrow{PC}=(0,2,-a),\overrightarrow{CB}=(1,-1,0)$,
平面PAD的法向量$\overrightarrow{n}$=(0,1,0),
設(shè)平面PBC的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PC}=2y-az=0}\\{\overrightarrow{m}•\overrightarrow{CB}=x-y=0}\end{array}\right.$,取x=a,得$\overrightarrow{m}$=(a,a,2),
∵平面PAD與PBC所成的銳二面角的大小為$\frac{π}{3}$,
∴cos$\frac{π}{3}$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{a}{\sqrt{2{a}^{2}+4}}$=$\frac{1}{2}$,
解得a=$\sqrt{2}$.
∴線段PD的長(zhǎng)度為$\sqrt{2}$.

點(diǎn)評(píng) 本題考查線面平行的證明,考查線段長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=f'(1)x2+x+1,則$\int_0^1{f(x)}dx$=( 。
A.$-\frac{7}{6}$B.$\frac{7}{6}$C.$\frac{5}{6}$D.$-\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(x1,y1)在曲線C1:y=x2-lnx上,點(diǎn)B(x2,y2)在直線x-y-2=0上,則${{(x}_{2}{-x}_{1})}^{2}$+${{(y}_{2}{-y}_{1})}^{2}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知梯形CDEF與△ADE所在的平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9,CD=12,連接BC,BF.
(Ⅰ)若G為AD邊上一點(diǎn),DG=$\frac{1}{3}$DA,求證:EG∥平面BCF;
(Ⅱ)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知關(guān)于x的不等式x|x-m|-2≥m.
(1)當(dāng)m=0時(shí),求該不等式的解集;
(2)當(dāng)x∈[2,3]時(shí),該不等式恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)證明:BD1⊥平面A1C1D;
(Ⅱ)求多面體BDC1A1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=|ax-2|.
(Ⅰ)當(dāng)a=2時(shí),解不等式f(x)>x+1;
(Ⅱ)若關(guān)于x的不等式f(x)+f(-x)<$\frac{1}{m}$有實(shí)數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的兩個(gè)焦點(diǎn),若點(diǎn)P在雙曲線上,且∠F1PF2=90°,|PF1|•|PF2|=2,則b=(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若集合P={x∈R|x>0},Q={x∈Z|(x+1)(x-4)<0},則P∩Q=( 。
A.(0,4)B.(4,+∞)C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案