已知數(shù)列{an}滿足條件: a1=1,a2=r(r>0),且{anan+1}是公比為q(q>0)的等比數(shù)列,設(shè)bn=a2n-1+a2n(n=1,2,…).
(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范圍;
(2)求bn和,其中Sn=b1+b2+…+bn;
(3)設(shè)r=219.2-1,q=,求數(shù)列{}的最大項(xiàng)和最小項(xiàng)的值.
(1) 0<q<; (2) (3) {Cn}的最大項(xiàng)C21=2.25,最小項(xiàng)C20=-4
(1)由題意得rqn-1+rqn>rqn+1.
由題設(shè)r>0,q>0,故從上式可得 q2-q-1<0,解得<q<,因q>0,故0<q<;
(2)∵.
b1=1+r≠0,所以{bn}是首項(xiàng)為1+r,公比為q的等比數(shù)列,從而bn=(1+r)qn-1.
當(dāng)q=1時(shí),Sn=n(1+r),
,從上式可知,
當(dāng)n-20.2>0,即n≥21(n∈N*)時(shí),Cn隨n的增大而減小,
故1<Cn≤C21=1+=2.25 ①
當(dāng)n-20.2<0,即n≤20(n∈N*)時(shí),Cn也隨n的增大而減小,
故1>Cn≥C20=1+=-4 ②
綜合①②兩式知,對任意的自然數(shù)n有C20≤Cn≤C21,
故{Cn}的最大項(xiàng)C21=2.25,最小項(xiàng)C20=-4。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3+4an |
12-4an |
1 | ||
an-
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
3nan-1 |
2an-1+n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
5 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com