15.設(shè)n>1且n∈N+,求證:$\frac{1}{2}<\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}<1$.

分析 設(shè)f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,求得f(n+1),作差,即可判斷f(n)遞增,可得f(n)>f(1)=$\frac{1}{2}$;再由f(n)中各項都小于$\frac{1}{n}$,累加即可得到f(n)<1,進而得證.

解答 證明:設(shè)f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,
可得f(n+1)=$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$+$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,
即有f(n+1)-f(n)=$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-$\frac{1}{n+1}$=$\frac{1}{2n+1}$-$\frac{1}{2n+2}$
=$\frac{1}{(2n+1)(2n+2)}$>0,
即有f(n)在n>1,n∈N*遞增,
可得f(n)>f(1)=$\frac{1}{2}$;
又$\frac{1}{n+1}$<$\frac{1}{n}$,$\frac{1}{n+2}$<$\frac{1}{n}$,…,$\frac{1}{2n}$<$\frac{1}{n}$,
可得f(n)<n•$\frac{1}{n}$=1,
綜上可得,$\frac{1}{2}$<f(n)<1.
故原不等式成立.

點評 本題考查不等式的證明,注意運用數(shù)列的單調(diào)性和不等式的性質(zhì),考查推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖所示,一隧道內(nèi)設(shè)雙行線公路,其截面由一個長方形和拋物線構(gòu)成.為保證安全,要求行使車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有0.5米.若行車道總寬度AB為6米,則車輛通過隧道的限制高度是3.2米(精確到0.1米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.拋物線y=4x2上的一點M到焦點的距離為4,則點M的縱坐標(biāo)為( 。
A.16B.36C.$\frac{31}{8}$D.$\frac{63}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知n∈N*,n≥2,求證:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)a,b,c∈R+.求證:
(1)ab(a+b)+bc(b+c)+ca(c+a)≥6abc;
(2)(a+b+c)($\frac{1}{a}$+$\frac{1}{b+c}$)≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.證明:
(1)x>0時,lnx≤x-1;
(2)x>1時$\frac{x-1}{lnx}$>$\frac{cosx}{sinx+\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}滿足a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$(n∈N*).
(1)計算a2,a3,a4,并由此猜想通項公式an
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線y2=-4x上橫坐標(biāo)為-6的點到焦點F的距離為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow{a}$=(x,1),$\overrightarrow$=(-1,3),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

同步練習(xí)冊答案