2.化簡(jiǎn):$\frac{A_n^m}{{A_{n-1}^{m-1}}}$=n.

分析 利用排列數(shù)公式直接求解.

解答 解:$\frac{A_n^m}{{A_{n-1}^{m-1}}}$=$\frac{n×(n-1)×(n-2)×…×(n-m+1)}{(n-1)×(n-2)×(n-3)×…×[(n-1)-(m-1)+1]}$=n.
故答案為:n.

點(diǎn)評(píng) 本題考查排列數(shù)公式化簡(jiǎn)求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意排列數(shù)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知命題p:已知函數(shù)f(x)的定義域?yàn)镽,若f(x)是奇函數(shù),則f(0)=0,則它的原命題,逆命題、否命題、逆命題中,真命題的個(gè)數(shù)為( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.拋物線(xiàn)有光學(xué)性質(zhì),即由其焦點(diǎn)射出的光線(xiàn)經(jīng)拋物線(xiàn)反射后,沿平行于拋物線(xiàn)對(duì)稱(chēng)軸的方向射出,反之亦然.如圖所示,今有拋物線(xiàn)y2=2px(p>0),一光源在點(diǎn)M($\frac{41}{4}$,4)處,由其發(fā)出的光線(xiàn)沿平行于拋物線(xiàn)的軸的方向射向拋物線(xiàn)上的點(diǎn)P,反射后,又射向拋物線(xiàn)上的點(diǎn)Q,再反射后又沿平行于拋物線(xiàn)的軸的方向射出,途中遇到直線(xiàn)l:2x-4y-17=0上的點(diǎn)N,再反射后又射回點(diǎn)M,設(shè)P,Q兩點(diǎn)的坐標(biāo)分別是(x1,y1),(x2,y2),
(Ⅰ)證明:y1y2=-p2;
(Ⅱ)求拋物線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,四棱錐P-ABCD中,底面ABCD是矩形,PA=AD,PA⊥平面ABCD,M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:平面PMC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.公理一:如果一條直線(xiàn)l上的兩點(diǎn)A,B在一個(gè)平面α內(nèi),那么這條直線(xiàn)l在此平面內(nèi).請(qǐng)用數(shù)學(xué)的符號(hào)語(yǔ)言表示為A∈l,B∈l,A∈α,B∈α⇒l?α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=$\frac{\frac{1}{6}•(-1)^{1+{C}_{2x}^{x}}•{A}_{x+2}^{5}}{1+{C}_{3}^{2}+{C}_{4}^{2}+…+{C}_{x-1}^{2}}$ (x∈N)的最大值是-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若函數(shù)f(x)在其定義域上既是減函數(shù)又是奇函數(shù),則函數(shù)f(x)的解析式可以是(  )
A.$f(x)={log_2}(\sqrt{{x^2}+1}-x)$B.$f(x)=\frac{1}{x}$C.f(x)=x2-x3D.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)在(0,π)內(nèi)有兩個(gè)不相等角α,β,滿(mǎn)足方程acosx+bsinx+c=0.試證:
(1)$\frac{a}{cos\frac{α+β}{2}}$=$\frac{sin\frac{α+β}{2}}$=$\frac{c}{cos\frac{α-β}{2}}$;
(2)cos2$\frac{α-β}{2}$=$\frac{{c}^{2}}{{a}^{2}+^{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案