科目: 來(lái)源:山西省山大附中2010-2011學(xué)年高二第一次月考數(shù)學(xué)試題 題型:044
已知f(x)=x2-(a+)x+1.
(1)當(dāng)a=時(shí),解不等式f(x)≤0;
(2)若a>0,解關(guān)于x的不等式f(x)≤0.
查看答案和解析>>
科目: 來(lái)源:山西省汾陽(yáng)中學(xué)2010-2011學(xué)年高一第一次月考數(shù)學(xué)試題 題型:044
已知定義在R+上的函數(shù)f(x)同時(shí)滿足下列三個(gè)條件:(1)f(3)=-1 (2)對(duì)任x,y都有f(xy)=f(x)+f(y) (3)x>1時(shí),f(x)<0
1.求f(9),f()的值
2.證明f(x)在(0,+∞)上是減函數(shù)
3.解關(guān)于x的不等式:f(6x)<f(x-1)-2
查看答案和解析>>
科目: 來(lái)源:山西省汾陽(yáng)中學(xué)2010-2011學(xué)年高一第一次月考數(shù)學(xué)試題 題型:044
已知函數(shù)f(x)=x2+ax+b
(1)若f(x)為偶函數(shù),求a的值.
(2)若對(duì)任意x都有f(1+x)=f(1-x)成立,求a的值.
(3)若f(x)在[1,+∞)上遞增,求a的取值范圍.
查看答案和解析>>
科目: 來(lái)源:山東省新泰第一中學(xué)北區(qū)2010-2011學(xué)年高一第一次大單元檢測(cè)數(shù)學(xué)試題 題型:044
已知f(x)=loga(1+x),g(x)=loga(1-x)(0>0,a≠1).
(1)求函數(shù)f(x)-g(x)的定義域;
(2)判斷函數(shù)f(x)-g(x)的奇偶性,并予以證明;
(3)求使f(x)-g(x)>0的x的取值范圍.
查看答案和解析>>
科目: 來(lái)源:山東省新泰第一中學(xué)北區(qū)2010-2011學(xué)年高一第一次大單元檢測(cè)數(shù)學(xué)試題 題型:044
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.
(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能是企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)約為多少萬(wàn)元(精確到1萬(wàn)元).
查看答案和解析>>
科目: 來(lái)源:山東省新泰第一中學(xué)北區(qū)2010-2011學(xué)年高一第一次大單元檢測(cè)數(shù)學(xué)試題 題型:044
已知奇函數(shù)f(x)=.
(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫(huà)出y=f(x)的圖象;
(2)若函數(shù)f(x)在區(qū)間[-1,|a|-2]上單調(diào)遞增,試確定a的取值范圍.
查看答案和解析>>
科目: 來(lái)源:山東省新泰第一中學(xué)北區(qū)2010-2011學(xué)年高一第一次大單元檢測(cè)數(shù)學(xué)試題 題型:044
已知函數(shù)f(x)=(a>1).
(1)判斷函數(shù)的奇偶性;
(2)求該函數(shù)的值域;
(3)證明f(x)是R上的增函數(shù).
查看答案和解析>>
科目: 來(lái)源:山東省新泰第一中學(xué)北區(qū)2010-2011學(xué)年高一第一次大單元檢測(cè)數(shù)學(xué)試題 題型:044
已知函數(shù)f(x)=-x2+2x.
(1)討論f(x)在區(qū)間(-∞,1]上的單調(diào)性,并證明你的結(jié)論;
(2)當(dāng)x∈[0,5]時(shí),求f(x)的最大值和最小值.
查看答案和解析>>
科目: 來(lái)源:山東省新泰第一中學(xué)北區(qū)2010-2011學(xué)年高二第一次大單元檢測(cè)數(shù)學(xué)試題 題型:044
在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點(diǎn),滿足AE∶EB=CF∶FA=CP∶PB=1∶2(如圖1).將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖2)
(Ⅰ)求證:A1E⊥平面BEP;
(Ⅱ)求二面角A1-BP-E的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com