科目: 來源: 題型:解答題
已知A,B,C是橢圓W:+y2=1上的三個點,O是坐標(biāo)原點.
(1)當(dāng)點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當(dāng)點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
(13分)已知圓O:x2+y2=3的半徑等于橢圓E:=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線l:y=x-的距離為-,點M是直線l與圓O的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)橢圓M:=1(a>)的右焦點為F1,直線l:x=與x軸交于點A,若=2 (其中O為坐標(biāo)原點).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求·的最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知直線l:y=x+,圓O:x2+y2=5,橢圓E:=1(a>b>0)的離心率e=,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的離心率為,以坐標(biāo)原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PM與QN相交于點T.求證:點T在橢圓C上.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為,一條準(zhǔn)線l:x=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標(biāo)原點,M是l上的點,F為橢圓C的右焦點,過點F作OM的垂線與以OM為直徑的圓D交于P,Q兩點.
①若PQ=,求圓D的方程;
②若M是l上的動點,求證點P在定圓上,并求該定圓的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知動點P與平面上兩定點連線的斜率的積為定值.
(1)試求動點P的軌跡方程C.
(2)設(shè)直線與曲線C交于M、N兩點,當(dāng)|MN|=時,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com