相關(guān)習(xí)題
 0  156495  156503  156509  156513  156519  156521  156525  156531  156533  156539  156545  156549  156551  156555  156561  156563  156569  156573  156575  156579  156581  156585  156587  156589  156590  156591  156593  156594  156595  156597  156599  156603  156605  156609  156611  156615  156621  156623  156629  156633  156635  156639  156645  156651  156653  156659  156663  156665  156671  156675  156681  156689  266669 

科目: 來源: 題型:

若函數(shù)y=f(x)滿足:集合A={f(n)|n∈N*}中至少有三個不同的數(shù)成等差數(shù)列,則稱函數(shù)f(x)是“等差源函數(shù)”,則下列四個函數(shù)中,“等差源函數(shù)”的個數(shù)是( 。
①y=2x+1;
②y=log2x;
③y=2x+1;
④y=sin(
π
4
x+
π
4
A、1B、2C、3D、4

查看答案和解析>>

科目: 來源: 題型:

下面使用的類比推理中恰當(dāng)?shù)氖牵ā 。?/div>
A、“若m•2=n•2,則m=n”類比得出“若m•0=n•0,則m=n”
B、“(a+b)c=ac+bc”類比得出“(a•b)c=ac•bc”
C、“(a+b)c=ac+bc”類比得出“
a+b
c
=
a
c
+
b
c
(c≠0)”
D、“(pq)n=pn•qn”類比得出“(p+q)n=pn+qn

查看答案和解析>>

科目: 來源: 題型:

某班級開會時決定是否增加一名新班委甲某,選舉方式最能體現(xiàn)全體學(xué)生的真實(shí)意愿的是( 。
A、請同意增選甲為新班委的舉手B、請不同意增選甲為新班委的舉手C、采用無記名投票D、采用記名投票

查看答案和解析>>

科目: 來源: 題型:

設(shè)f為實(shí)系數(shù)三次多項(xiàng)式函數(shù).已知五個方程式的相異實(shí)根個數(shù)如下表所述﹕
f(x)-20=01f(x)+10=01
f(x)-10=03f(x)+20=01
f(x)=03
關(guān)于f的極小值α﹐試問下列選項(xiàng)是正確的﹖( 。
A、0<α<10
B、-20<α<-10
C、-10<α<0
D、α不存在

查看答案和解析>>

科目: 來源: 題型:

近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 不患心肺疾病 合計
5
10
合計 50
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為
3
5

(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整;
(Ⅱ)已知在患心肺疾病的10位女性中,有3位又患胃。F(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,求選出的這3名女性中至少有2人患胃病的概率.

查看答案和解析>>

科目: 來源: 題型:

隨機(jī)詢問某大學(xué)40名不同性別的大學(xué)生在購買食物時是否讀營養(yǎng)說明,得到如下列聯(lián)表:性別與讀營養(yǎng)說明列聯(lián)表
總計
讀營養(yǎng)說明 16 8 24
不讀營養(yǎng)說明 4 12 16
總計 20 20 40
(1)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯誤的概率不超過0.01的前提下認(rèn)為性別與是否讀營養(yǎng)說明之間有關(guān)系?
(2)從被詢問的16名不讀營養(yǎng)說明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)ξ的分布列及其均值(即數(shù)學(xué)期望).
(注:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量.)

查看答案和解析>>

科目: 來源: 題型:

為減少“舌尖上的浪費(fèi)”,某學(xué)校對在該校食堂用餐的學(xué)生能否做到“光盤”,進(jìn)行隨機(jī)調(diào)查,從中隨機(jī)抽取男、女生各15名進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
  男性 女性 合計
做不到“光盤” 12    
能做到“光盤”   10  
合計     30
(Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整,并據(jù)此資料分析:有多大的把握可以認(rèn)為“在學(xué)校食堂用餐的學(xué)生能否做到‘光盤’與行吧有關(guān)”?
(Ⅱ)若從這15名女學(xué)生中隨機(jī)抽取2人參加某一項(xiàng)活動,記其中做不到“光盤”的人數(shù)X,求X的分布列和數(shù)學(xué)期望.K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.05 0.025 0.010 0.005
k0 3.841 5.024 6.635 7.873

查看答案和解析>>

科目: 來源: 題型:

為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在我市某普通中學(xué)高中生中隨機(jī)抽取200名學(xué)生,得到如下2×2列聯(lián)表:
喜歡數(shù)學(xué)課 不喜歡數(shù)學(xué)課 合計
30 60 90
20 90 110
合計 50 150 200
(1)根據(jù)獨(dú)立性檢驗(yàn)的基本思想,約有多大的把握認(rèn)為“性別與喜歡數(shù)學(xué)課之間有關(guān)系”?
(2)若采用分層抽樣的方法從喜歡數(shù)學(xué)課的學(xué)生中隨機(jī)抽取5人,則男生和女生抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從中隨機(jī)抽取2人,求恰有一男一女的概率.

查看答案和解析>>

科目: 來源: 題型:

為了判斷高中三年級學(xué)生是否選修文科與性別的關(guān)系,現(xiàn)隨機(jī)抽取50名學(xué)生,得到如下2×2列聯(lián)表:
理科 文科
13 10
7 20
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根據(jù)表中數(shù)據(jù),得到k=
50×(13×20-10×7)2
23×27×20×30
≈4.844.則認(rèn)為選修文科與性別有關(guān)系出錯的可能性為
 

查看答案和解析>>

科目: 來源: 題型:

如圖是兩個分類變量X、Y的部分2×2列聯(lián)表,則K2的觀測值為
 

y1 y2
x1 10 50
x2 20 40

查看答案和解析>>

同步練習(xí)冊答案