相關(guān)習(xí)題
 0  169435  169443  169449  169453  169459  169461  169465  169471  169473  169479  169485  169489  169491  169495  169501  169503  169509  169513  169515  169519  169521  169525  169527  169529  169530  169531  169533  169534  169535  169537  169539  169543  169545  169549  169551  169555  169561  169563  169569  169573  169575  169579  169585  169591  169593  169599  169603  169605  169611  169615  169621  169629  266669 

科目: 來源:不詳 題型:解答題

y軸上兩定點B1(0,b)、B2(0,-b),x軸上兩動點M,N.P為B1M與B2N的交點,點M,N的橫坐標(biāo)分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動點P的軌跡方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓
x2
2
+
y2
4
=1
兩焦點分別為F1、F2,P是橢圓在第一象限弧上一點,并滿足
PF1
PF2
=1
,過P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標(biāo);
(2)求證:直線AB的斜率為定值;
(3)求△PAB面積的最大值.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0),它們所表示的曲線可能是(  )
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知拋物線C:y=-x2+2x,在點A(0,0),B(2,0)分別作拋物線的切線L1、L2
(1)求切線L1和L2的方程;
(2)求拋物線C與切線L1和L2所圍成的面積S.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

過點A(0,2)可以作 ______條直線與雙曲線x2-
y2
4
=1
有且只有一個公共點.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,在以點O為圓心,AB為直徑的半圓中,D為半圓弧的中心,P為半圓弧上一點,且AB=4,∠POB=30°,雙曲線C以A,B為焦點且經(jīng)過點P.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求雙曲線C的方程;
(2)設(shè)過點D的直線l與雙曲線C相交于不同兩點E、F,若△OEF的面積不小于2
2
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C1
x2
4
+y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓C1和C2上,
OB
=2
OA
,求直線AB的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+
2
=0
相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P(4,0),M,N是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連接PN交橢圓C于另一點E,求直線PN的斜率的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明直線ME與x軸相交于定點.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知雙曲線的中心在原點,左右焦點分別為F1,F(xiàn)2,離心率為
2
,且過點(4,-
10
)
,
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)若直線系kx-y-3k+m=0(其中k為參數(shù))所過的定點M恰在雙曲線上,求證:F1M⊥F2M.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,線段MN的兩個端點M、N分別在x軸、y軸上滑動,|MN|=5,點P是線段MN上一點,且
MP
=
2
3
PN
,點P隨線段MN的運動而變化.
(1)求點P的軌跡C的方程;
(2)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標(biāo)原點,設(shè)
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案