相關(guān)習(xí)題
 0  171182  171190  171196  171200  171206  171208  171212  171218  171220  171226  171232  171236  171238  171242  171248  171250  171256  171260  171262  171266  171268  171272  171274  171276  171277  171278  171280  171281  171282  171284  171286  171290  171292  171296  171298  171302  171308  171310  171316  171320  171322  171326  171332  171338  171340  171346  171350  171352  171358  171362  171368  171376  266669 

科目: 來源:不詳 題型:填空題

籃球運(yùn)動員在比賽中每次罰球命中得1分,罰不中得0分,已知某運(yùn)動員罰球命中的概率為0.7,則他罰球2次(每次罰球結(jié)果互不影響)的得分的數(shù)學(xué)期望是       

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某批發(fā)市場對某種商品的日銷售量(單位:噸)進(jìn)行統(tǒng)計,最近50天的統(tǒng)計結(jié)果如下表:
日銷售量(噸)
1
1.5
2
天數(shù)
10
25
15
(1)計算這50天的日平均銷售量;
(2)若以頻率為概率,且每天的銷售量相互獨立.
①求5天中該種商品恰有2天的銷售量為1.5噸的概率;
②已知每噸該商品的銷售利潤為2萬元,X表示該種商品兩天銷售利潤的和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某食品加工廠甲,乙兩個車間包裝小食品,在自動包裝傳送帶上每隔30分鐘抽取一袋食品,稱其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說明理由)?
(2)根據(jù)數(shù)據(jù)估計這兩個車間所包裝產(chǎn)品每袋的平均質(zhì)量;
(3)分析哪個車間的技術(shù)水平更好些?
附:

查看答案和解析>>

科目: 來源:不詳 題型:填空題

隨機(jī)變量X的分布列如下:
ξ
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,若,則的值是           

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知一個樣本的方差為
,
若這個樣本的容量為,平均數(shù)為,則(      )
A.0B.24C.52D.148

查看答案和解析>>

科目: 來源:不詳 題型:解答題

為普及高中生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了高中生安全知識與安全逃生能力競賽. 該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段)
頻數(shù)(人數(shù))
頻率
[60,70)


[70,80)


[80,90)


 [90,100)


合  計


(Ⅰ)求出上表中的的值;
(Ⅱ)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一·二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一·二班在決賽中進(jìn)入前三名的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知某離散型隨機(jī)變量服從的分布列如圖,則隨機(jī)變量的方差等于    (    )






A.            B.           C.            D.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

樣本中共有5個個體,其值分別為.若該樣本的平均值為1,則樣本方差為
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

為了響應(yīng)學(xué)!皩W(xué)科文化節(jié)”活動,數(shù)學(xué)組舉辦了一場數(shù)學(xué)知識比賽,共分為甲、乙兩組.其中甲組得滿分的有1個女生和3個男生,乙組得滿分的有2個女生和4個男生.現(xiàn)從得滿分的學(xué)生中,每組各任選2個學(xué)生,作為數(shù)學(xué)組的活動代言人.
(1)求選出的4個學(xué)生中恰有1個女生的概率;(2)設(shè)為選出的4個學(xué)生中女生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

離散型隨機(jī)變量的分布列為:


1





則X的期望___________.

查看答案和解析>>

同步練習(xí)冊答案