相關(guān)習(xí)題
 0  210593  210601  210607  210611  210617  210619  210623  210629  210631  210637  210643  210647  210649  210653  210659  210661  210667  210671  210673  210677  210679  210683  210685  210687  210688  210689  210691  210692  210693  210695  210697  210701  210703  210707  210709  210713  210719  210721  210727  210731  210733  210737  210743  210749  210751  210757  210761  210763  210769  210773  210779  210787  266669 

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=-
1
a
+
2
x

(Ⅰ)判斷f(x)在(0,+∞)上的增減性,并證明你的結(jié)論;
(Ⅱ)當(dāng)a=1時(shí),解關(guān)于x的不等式f(|x|)≥0;
(Ⅲ)若f(x)+2x≤0在(-∞,0)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖某拋物線形拱橋跨度是20cm,拱橋高度是4m,在建橋時(shí),每4m需用一根支柱支撐,求其中最長(zhǎng)支柱AB的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:

解關(guān)于x的不等式x2-(a+1)x+a>0(其中a∈R)

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=2xlnx.
(1)求單調(diào)區(qū)間和最小值;
(2)若對(duì)x≥1,都有函數(shù)f(x)的圖象總在直線y=ax-2的上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)g(x)=Acos(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)將函數(shù)g(x)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)向右平移
π
3
個(gè)單位后得到函數(shù)f(x)的圖象,求函數(shù)f(x)在x∈[-
π
6
,
π
3
]上的值域;
(2)求使f(x)≥2的x的取值范圍的集合.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知f(x)=
x, x≤2
-x, x>2
畫(huà)出輸入x,打印f(x)的程序框圖.

查看答案和解析>>

科目: 來(lái)源: 題型:

(1)5位同學(xué)報(bào)名參加兩個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有多少種?
(2)有面值為一角、五角、一元、五元、十元、五十元、一百元人民幣各一張,共可組成種不同的非零幣值.

查看答案和解析>>

科目: 來(lái)源: 題型:

對(duì)某中學(xué)高二年級(jí)學(xué)生是愛(ài)好體育還是愛(ài)好文娛進(jìn)行調(diào)查,共調(diào)查了40人,所得2×2列聯(lián)表如下:
愛(ài)好
體育
愛(ài)好
文娛
合計(jì)
男生 15 A B
女生 C 10 D
合計(jì) 20 E 40
已知P(K2>2.072)=0.15,p(k2≥2.760)=0.01
(1)將2×2列聯(lián)表A、B、C、三處補(bǔ)充完整;
(2)若已選出指定的三個(gè)男生甲、乙、丙;兩個(gè)女生M,N,現(xiàn)從中選兩人參加某項(xiàng)活動(dòng),求選出的兩個(gè)人恰好是一男一女的概率;
(3)試用獨(dú)立性檢驗(yàn)方法判斷性別與愛(ài)好體育的關(guān)系?

查看答案和解析>>

科目: 來(lái)源: 題型:

已知f(x)=logax,g(x)=loga(2-x),(a>0,a≠1),
(1)若f(4)<2,求a的取值范圍;
(2)若a>1,設(shè)h(x)=f(x)+g(x),求h(x)的定義域和值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案