相關(guān)習題
 0  231276  231284  231290  231294  231300  231302  231306  231312  231314  231320  231326  231330  231332  231336  231342  231344  231350  231354  231356  231360  231362  231366  231368  231370  231371  231372  231374  231375  231376  231378  231380  231384  231386  231390  231392  231396  231402  231404  231410  231414  231416  231420  231426  231432  231434  231440  231444  231446  231452  231456  231462  231470  266669 

科目: 來源: 題型:解答題

5.已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D,又知BA1⊥AC1
(1)求證:AC1⊥平面A1BC;
(2)求AC1 與平面BCC1 B1 所成角的正弦值;
(3)求二面角A-A1 B-C1 的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,在四梭錐A-BCDE中,EB=EA=AB=BC.,∠EBC=90°,M為AC的中點,AB⊥EM.
(1)求證:平面ABE⊥平面ABC;
(2)求二面角B-EM-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知,AB⊥平面BCD,CD⊥CB,AD與平面BCD所成的角為30°,且AB=BC.
(1)求AD與平面ABC所成角的大小;
(2)求二面角C-AD-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖:在長方體ABCD-A1B1C1D1中,AB=AA1=a,BC=$\sqrt{2}$a,M分別是AD的中點.
(1)求證B1C1∥平面A1BC;
(2)求平面A1MC與底面ABCD所成二面角(銳角)的大。

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知銳二面角α-l-β,A∈l,C∉l,C∈α,且AC⊥l,B∈l,D∉l,D∈β,BD⊥l.若$\overrightarrow{AC}$=(-2,1,-1),$\overrightarrow{BD}$=(-1,-1,-2),則二面角α-l-β的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知曲線C1:$\left\{{\begin{array}{l}{x=-2+cost}\\{y=1+sint}\end{array}$(t為參數(shù)),C2:$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{2}}}{2}s}\\{y=\frac{{\sqrt{2}}}{2}s}\end{array}$(s為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)曲線C2交曲線C1于A,B兩點,求|AB|.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,圓M與圓N交于A、B兩點,以A為切點作兩圓的切線分別交圓M和圓N于C,D兩點,延長DB交圓M于點E,延長CB交圓N于點F.
(1)求證:△ABC~△DBA;
(2)求證:CF=DE.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知向量$\overrightarrow m$=(2,-4),$\overrightarrow n$=(a,1)(a∈R)相互垂直,則|${\overrightarrow m$+$\overrightarrow n}$|的值為5.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.如圖,在長方體ABCD-A1B1C1D1中,E,H分別是棱A1B1,D1C1上的動點(點E與B1不重合),且EH∥A1D1,過EH的動平面與棱BB1,CC1相交,交點分別為F,G.設(shè)AB=2AA1=2a,B1E+B1F=2a.在長方體ABCD-A1B1C1D1內(nèi)隨機選取一點,則該點取自于幾何體A1ABFE-D1DCGH內(nèi)的概率的最小值為( 。
A.$\frac{11}{12}$B.$\frac{3}{4}$C.$\frac{13}{16}$D.$\frac{7}{8}$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知a=$\int_0^1$(x-x2)dx,則二項式(x2-$\frac{12a}{x}$)6展開式中含x3的項的系數(shù)為( 。
A.160B.-160C.20D.-20

查看答案和解析>>

同步練習冊答案