相關(guān)習(xí)題
 0  235041  235049  235055  235059  235065  235067  235071  235077  235079  235085  235091  235095  235097  235101  235107  235109  235115  235119  235121  235125  235127  235131  235133  235135  235136  235137  235139  235140  235141  235143  235145  235149  235151  235155  235157  235161  235167  235169  235175  235179  235181  235185  235191  235197  235199  235205  235209  235211  235217  235221  235227  235235  266669 

科目: 來源: 題型:選擇題

9.老師有同樣的作文練習(xí)2本,同樣的英語練習(xí)3本,從中取出4本送給4位學(xué)生,每位學(xué)生1本,則不同的送法共有( 。
A.4種B.10種C.18種D.20種

查看答案和解析>>

科目: 來源: 題型:選擇題

8.通過4次試驗(yàn)得到變量x,y的數(shù)據(jù)如表,根據(jù)表中數(shù)據(jù)得到回歸直線方程$\hat y$=9.4x+$\hat a$,由此當(dāng)x=6時(shí),y的估計(jì)值為(  )
x2345
y26394954
A.63.6B.65.5C.67.7D.72

查看答案和解析>>

科目: 來源: 題型:選擇題

7.如圖所示,正方形上連接著等腰直角三角形,等腰直角三角形邊上再連接正方形…,如此繼續(xù),若共得到1023個(gè)正方形,設(shè)初始正方形的邊長(zhǎng)為$\frac{{\sqrt{2}}}{2}$,則最小正方形的邊長(zhǎng)為( 。
A.$\frac{1}{64}$B.$\frac{1}{16}$C.$\frac{1}{32}$D.$\frac{1}{8}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設(shè)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{x{+∫}_{0}^{a}3{t}^{2}dt,x≤0}\end{array}\right.$,若f(f(1))≥1,則實(shí)數(shù)a的范圍是( 。
A.a≤-1B.a≥-1C.a≤1D.a≥1

查看答案和解析>>

科目: 來源: 題型:選擇題

5.從[0,2]中任取一個(gè)數(shù)x,從[0,3]中任取一個(gè)數(shù)y,則使x2+y2≤4的概率為( 。
A.$\frac{1}{2}$B.$\frac{π}{9}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設(shè)a,b是異面直線,a?平面α,則過直線b與平面α平行的平面(  )
A.不存在B.一定有1個(gè)C.至多有1個(gè)D.一定有2個(gè)以上

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知點(diǎn)A(a,2)到直線l:x-y+3=0距離為$\sqrt{2}$,則a等于( 。
A.1B.±1C.-3D.1或-3

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知直線l:2x+4y+3=0,P為l上的動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),若點(diǎn)Q滿足:2$\overrightarrow{OQ}=\overrightarrow{QP}$,則點(diǎn)Q的軌跡方程是( 。
A.2x+4y+1=0B.2x+4y+3=0C.2x+4y+2=0D.x+2y+1=0

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)于t∈R,不等式f(2t2-k)+f(t2-2t)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知向量$\overrightarrow{m}$=(sinx,$\frac{3}{2}$),$\overrightarrow{n}$=($\sqrt{3}$Acosx,$\frac{A}{3}$cos2x)(A>0),函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最大值為6,求A.

查看答案和解析>>

同步練習(xí)冊(cè)答案