相關(guān)習題
 0  236451  236459  236465  236469  236475  236477  236481  236487  236489  236495  236501  236505  236507  236511  236517  236519  236525  236529  236531  236535  236537  236541  236543  236545  236546  236547  236549  236550  236551  236553  236555  236559  236561  236565  236567  236571  236577  236579  236585  236589  236591  236595  236601  236607  236609  236615  236619  236621  236627  236631  236637  236645  266669 

科目: 來源: 題型:填空題

11.下列命題中:
(1)a=4,A=30°,若△ABC唯一確定,則0<b≤4.
(2)若點(1,1)在圓x2+y2+mx-y+4=0外,則m的取值范圍是(-5,+∞);
(3)若曲線$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示雙曲線,則k的取值范圍是(1,+∞]∪(-∞,-4];
(4)將函數(shù)y=cos(2x-$\frac{π}{3}$)(x∈R)的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=cos2x的圖象.
(5)已知雙曲線方程為x2-$\frac{{y}^{2}}{2}$=1,則過點P(1,1)可以作一條直線l與雙曲線交于A,B兩點,使點P是線段AB的中點.正確的是(2),(5)(填序號)

查看答案和解析>>

科目: 來源: 題型:填空題

10.若樣本數(shù)據(jù)x1,x2,…,x10的方差為8,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的方差為32.

查看答案和解析>>

科目: 來源: 題型:解答題

9.(1)求函數(shù)y=x(a-2x)(x>0,a為大于2x的常數(shù))的最大值;
(2)已知a>0,b>0,c>0,a2+b2+c2=4,求ab+bc+ac的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.在等比數(shù)列{an}中,已知a1=3,公比q≠1,等差數(shù)列{bn}滿足b1=a1,b4=a2,b13=a3
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記cn=an+bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow$=(sinx,cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow$+2
(1)求f(x)的最值及取得最值時的x的取值構(gòu)成的集合;
(2)求f(x)在區(qū)間[0,2π]上的單調(diào)減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

6.在幾何體ABCDE中,∠BAC=90°,DC⊥平面ABC,EB⊥平 面ABC,F(xiàn)是BC的中點,AB=AC
(1)求證:DC∥平面ABE;
(2)求證:AF⊥平面BCDE.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知p:-2≤x≤1,q:(x-a)(x-a-4)>0,若p是q成立的充分不必要條件,則實數(shù)a的取值范圍是(-∞,-6)∪(1,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知平面內(nèi)有A(-2,1),B(1,4),使$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$成立的點C坐標為(-1,2).

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若cosα=$\frac{1}{2}$,α∈(0,π),則cos($\frac{π}{2}$-α)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,PA垂直于矩形ABCD所在平面,AE⊥PB,垂足為E,EF⊥PC垂足為F.
(Ⅰ)設(shè)平面AEF∩PD=G,求證:PC⊥AG;
(Ⅱ)設(shè)PA=$\sqrt{6},AB=\sqrt{3}$,M是線段PC的中點,求證:DM∥平面AEC.

查看答案和解析>>

同步練習冊答案