相關習題
 0  237582  237590  237596  237600  237606  237608  237612  237618  237620  237626  237632  237636  237638  237642  237648  237650  237656  237660  237662  237666  237668  237672  237674  237676  237677  237678  237680  237681  237682  237684  237686  237690  237692  237696  237698  237702  237708  237710  237716  237720  237722  237726  237732  237738  237740  237746  237750  237752  237758  237762  237768  237776  266669 

科目: 來源: 題型:填空題

3.在Rt△ABC中,D是斜邊AB的中點,若BC=6,CD=5,則$\overrightarrow{BD}$•$\overrightarrow{AC}$=-32.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.若函數(shù)g(x)滿足g(g(x))=n(n∈N)有n+3個解,則稱函數(shù)g(x)為“復合n+3解”函數(shù).已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+3,x≤0}\\{\frac{{e}^{x-1}}{x}},x>0\end{array}\right.$(其中e是自然對數(shù)的底數(shù),e=2.71828…,k∈R),且函數(shù)f(x)為“復合5解”函數(shù),則k的取值范圍是(  )
A.(-∞,0)B.(-e,e)C.(-1,1)D.(0,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

1.當函數(shù)f(x)=$\sqrt{3}$sinx+cosx-t(t∈R)在閉區(qū)間[0,2π]上,恰好有三個零點時,這三個零點之和為( 。
A.$\frac{10π}{3}$B.$\frac{8π}{3}$C.$\frac{7π}{3}$D.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.設a=($\frac{5}{3}$)${\;}^{\frac{1}{6}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{5}}$,c=ln$\frac{5}{3}$,則a,b,c的大小關系是( 。
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知數(shù)列{an}的前n項和Sn滿足Sn+Sm=Sn+m(n,m∈N*)且a1=5,則a8=(  )
A.40B.35C.12D.5

查看答案和解析>>

科目: 來源: 題型:選擇題

18.甲、乙兩類水果的質(zhì)量(單位:kg)分別服從正態(tài)分布N(μ1,σ12)及N(μ2,σ22),其正態(tài)分布的密度曲線如圖所示,則下列說法錯誤的是( 。
A.乙類水果的質(zhì)量服從的正態(tài)分布的參數(shù)σ2=1.99
B.甲類水果的質(zhì)量比乙類水果的質(zhì)量更集中
C.甲類水果的平均質(zhì)量μ1=0.4kg
D.甲類水果的平均質(zhì)量比乙類水果的平均質(zhì)量小

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知復數(shù)z滿足z(1-i)2=1+i(i為虛數(shù)單位),則z=( 。
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知關于x的不等式|x-m|≤n的解集為{x|0≤x≤4}.
(1)求實數(shù)m、n的值;
(2)設a>0,b>0,且a+b=$\frac{m}{a}$+$\frac{n}$,求a+b的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖所示,已知AB為⊙O的直徑,PB、PN都是⊙O的切線,切點分別為B、N,PN交BA的延長線于點M.
(1)求證:AN∥OP;
(2)若AB=4$\sqrt{3}$,BP=6,求證:MN=NP.

查看答案和解析>>

科目: 來源: 題型:填空題

14.設平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|、|$\overrightarrow$|、|$\overrightarrow{a}$-$\overrightarrow$|∈[2,6],則$\overrightarrow{a}$•$\overrightarrow$的取值范圍為[-14,34].

查看答案和解析>>

同步練習冊答案