相關(guān)習(xí)題
 0  239874  239882  239888  239892  239898  239900  239904  239910  239912  239918  239924  239928  239930  239934  239940  239942  239948  239952  239954  239958  239960  239964  239966  239968  239969  239970  239972  239973  239974  239976  239978  239982  239984  239988  239990  239994  240000  240002  240008  240012  240014  240018  240024  240030  240032  240038  240042  240044  240050  240054  240060  240068  266669 

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}a{x^2}$+1,a≠0.
(I)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(II)設(shè)x0>$\frac{a}{2}$,求函數(shù)g(x)=f(x)-f(x0)-(x-x0)f′(x0)在區(qū)間$(\frac{a}{2},+∞)$的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.△PF1F2的一個頂點P(7,12)在雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1上,另外兩頂點F1、F2為該雙曲線的左、右焦點,則△PF1F2的內(nèi)心坐標(biāo)為(1,$\frac{3}{2}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知f(x)=sin$\frac{πx}{2}$,g(x)=cos$\frac{πx}{2}$則集合{x|f(x)=g(x)}等于( 。
A.{x|x=4k+$\frac{1}{2}$,k∈Z}B.{x|x=2k+$\frac{1}{2}$,k∈Z}C.{x|x=4k±$\frac{1}{2}$,k∈Z}D.{x|x=2k+1,k∈Z}

查看答案和解析>>

科目: 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=sinθ.
(Ⅰ)求曲線C1的極坐標(biāo)方程及曲線C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線C1,C2交于O,A兩點,過O點且垂直于OA的直線與曲線C1,C2交于M,N兩點,求|MN|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若關(guān)于x的不等式f(x)≤λ(x2-1)對任意x∈[1,+∞)恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知菱形ABCD如圖(1)所示,其中∠ACD=60°,AB=2,AC與BD相交于點O,現(xiàn)沿AC進(jìn)行翻折,使得平面ACD⊥平面ABC,取點E,連接AE,BE,CE,DE,使得線段BE再平面ABC內(nèi)的投影落在線段OB上,得到的圖形如圖(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)證明:DE⊥AC;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.$\frac{3-2i}{1+3i}$=( 。
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知集合A={x|x∈N|2≤x≤5},B={x|y=$\sqrt{3-x}$},則A∩B=(  )
A.{2}B.{2,3}C.{2,3,4}D.{4,5}

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=|3x-a|+|3x-6|,g(x)=|x-2|+1.
(Ⅰ)a=1時,解不等式f(x)≥8;
(Ⅱ)若對任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=1+\sqrt{3}cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=1.
(Ⅰ)分別寫出C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(Ⅱ)若射線l的極坐標(biāo)方程θ=$\frac{π}{3}$(ρ≥0),且l分別交曲線C1、C2于A、B兩點,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案