相關(guān)習(xí)題
 0  240726  240734  240740  240744  240750  240752  240756  240762  240764  240770  240776  240780  240782  240786  240792  240794  240800  240804  240806  240810  240812  240816  240818  240820  240821  240822  240824  240825  240826  240828  240830  240834  240836  240840  240842  240846  240852  240854  240860  240864  240866  240870  240876  240882  240884  240890  240894  240896  240902  240906  240912  240920  266669 

科目: 來源: 題型:填空題

9.平面上點O為坐標(biāo)原點,A(0,2),B(1,0),C是平面上任意一點且滿足$\overrightarrow{AC}=\overrightarrow{AO}+2\overrightarrow{OB}+\overrightarrow{BA}$,則C點坐標(biāo)是(1,2).

查看答案和解析>>

科目: 來源: 題型:選擇題

8.若函數(shù)y=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在一個周期內(nèi)的圖象如圖所示,且在$y軸上的截距為\sqrt{2}$,M,N分別是這段圖象的最高點和最低點,
則$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影為( 。
A.$\frac{{\sqrt{29}}}{29}$B.$\frac{{\sqrt{5}}}{5}$C.-$\frac{{\sqrt{29}}}{29}$D.$-\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知$sin(\frac{π}{3}-\frac{α}{2})=-\frac{{\sqrt{3}}}{2}$,則$cos(\frac{π}{3}+α)$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.在△ABC中,利用正弦定理解三角形時,其中有兩解的選項是( 。
A.a=3,b=6,A=30°B.a=6,b=5,A=150°C.$a=3,b=4\sqrt{3},A={60^0}$D.$a=\frac{9}{2},b=5,A={30^0}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若$tan({α+\frac{π}{4}})=2+\sqrt{3}$,則tanα的值是( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.1D.以上答案都不對

查看答案和解析>>

科目: 來源: 題型:選擇題

4.在△ABC中,若$\overrightarrow{AB}=(1,m),\overrightarrow{BC}=(3,-2)$,∠B=90°則m=(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若扇形的半徑為6cm,所對的弧長為2πcm,則這個扇形的面積是( 。
A.12πcm2B.6 cm2C.6πcm2D.4 cm2

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時,f(x)=2x(1-x),則f(-$\frac{5}{2}$)+f(1)=(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知函數(shù)f(x)的定義域為[0,2],則函數(shù)g(x)=$\frac{f(2x)}{x-1}$的定義域為( 。
A.[0,1)∪(1,4]B.[0,1)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,2]

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)數(shù)列{an}滿足a1=2,${a_{n+1}}-{a_n}={2^n}$;數(shù)列{bn}的前n項和為Sn,且${S_n}=\frac{1}{2}(3{n^2}-n)$.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)把數(shù)列{an}和{bn}的公共項從小到大排成新數(shù)列{cn},試寫出c1,c2,并證明{cn}為等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案