相關(guān)習(xí)題
 0  252543  252551  252557  252561  252567  252569  252573  252579  252581  252587  252593  252597  252599  252603  252609  252611  252617  252621  252623  252627  252629  252633  252635  252637  252638  252639  252641  252642  252643  252645  252647  252651  252653  252657  252659  252663  252669  252671  252677  252681  252683  252687  252693  252699  252701  252707  252711  252713  252719  252723  252729  252737  266669 

科目: 來(lái)源: 題型:填空題

16.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$滿足$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\frac{1}{2}$.若(5$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$)⊥($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$)(k∈R),則k=2,|$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$|=$\sqrt{7}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.在數(shù)列{an}中,a1=1,$\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}=\frac{2}{{{a_n}{a_{n+1}}}}(n∈{N^*})$.
(Ⅰ)求證數(shù)列{an}為等差數(shù)列,并求它的通項(xiàng)公式;
(Ⅱ)${b_n}=\frac{1}{a_n^2}$,求證:${b_1}+{b_2}+…+{b_n}<\frac{5}{4}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

14.在等差數(shù)列{an}中,已知前20項(xiàng)之和S20=170,則a5+a16=17.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x),當(dāng)x∈(0,1]時(shí)滿足如下性質(zhì):f(x)=2lnx且$f(x)=2f(\frac{1}{x})$,若在區(qū)間$[\frac{1}{3},3]$內(nèi),函數(shù)g(x)=f(x)-ax,有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$[\frac{ln3}{3},\frac{1}{e})$B.$[\frac{4ln3}{3},\frac{4}{e})$C.$(0,\frac{1}{e})$D.$(0,\frac{4}{e})$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.已知正四棱錐P-ABCD的側(cè)棱與底面所成角為60°,M為PA中點(diǎn),連接DM,則DM與平面PAC所成角的大小是45°.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.下列命題中,正確的有①③④
①△ABC中,A>B的充分必要條件是sinA>sinB;
②已知向量$\overrightarrow a=(λ,2λ),\overrightarrow b=(3λ,2)$,如果$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則λ的取值范圍是$λ<-\frac{4}{3}$或λ>0;
③若函數(shù)f(x)=x(x-c)2在x=2處有極大值,則c=6;
④在銳角△ABC中,BC=1,B=2A,則AC的取值范圍為$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.已知$|{\overrightarrow a}|=\sqrt{3},|{\overrightarrow b}|=2$,$|{\overrightarrow a}|$與$|{\overrightarrow b}|$夾角為30°,則$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{7}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=lnx-ax-3(a≠0)
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若對(duì)于任意的a∈[1,2],若函數(shù)g(x)=x3+$\frac{{x}^{2}}{2}$[m-2f′(x)]在區(qū)間(a,3)上有最值,求實(shí)數(shù)m的取值范圍;
(Ⅲ)求證:ln($\frac{1}{{2}^{2}}$+1)+ln($\frac{1}{{3}^{2}}$+1)+ln($\frac{1}{{4}^{2}}$+1)+…+ln($\frac{1}{{n}^{2}}$+1)<$\frac{2}{3}$(n≥2,n∈N*).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.-2B.2C.5D.7

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{^{2}}$=1的一個(gè)焦點(diǎn)在圓x2+y2-2x-8=0上,則雙曲線的離心率為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{\sqrt{11}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案