相關習題
 0  257471  257479  257485  257489  257495  257497  257501  257507  257509  257515  257521  257525  257527  257531  257537  257539  257545  257549  257551  257555  257557  257561  257563  257565  257566  257567  257569  257570  257571  257573  257575  257579  257581  257585  257587  257591  257597  257599  257605  257609  257611  257615  257621  257627  257629  257635  257639  257641  257647  257651  257657  257665  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1﹣x)﹣loga(1+x)(a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)求滿足不等式f(x)<0的x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx(a∈R).
(Ⅰ)當a=2時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)設函數(shù)h(x)=f(x)+ , 求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)若g(x)=﹣ , 在[1,e](e=2.71828…)上存在一點x0 , 使得f(x0)≤g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓)的左、右焦點分別為,點在橢圓.

(1)求橢圓的標準方程;

2)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax﹣a(其中a∈R,e是自然對數(shù)的底數(shù),e=2.71828…).
(Ⅰ)當a=e時,求函數(shù)f(x)的極值;
(Ⅱ)若f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=0處的切線為l:4x+y﹣5=0,若x=﹣2時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:y=(0<x≤120).已知甲、乙兩地相距100千米.
(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.[﹣ , ]
B.(﹣ ,
C.(﹣∞,﹣)∪( , +∞)
D.(﹣∞,﹣)∩( , +∞)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線l過點P(0,2),斜率為k,圓Q:x2+y2﹣12x+32=0.
(1)若直線l和圓相切,求直線l的方程;
(2)若直線l和圓交于A、B兩個不同的點,問是否存在常數(shù)k,使得+共線?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)= ,x∈[2,5].
(1)判斷函數(shù)f(x)的單調(diào)性,并用定義證明你的結論;
(2)求不等式f(m+1)<f(2m﹣1)的解集.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側的圖象,如圖所示,請補全函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)(x∈R)的遞增區(qū)間;

(2)寫出函數(shù)f(x)(x∈R)的值域;
(3)寫出函數(shù)f(x)(x∈R)的解析式.

查看答案和解析>>

同步練習冊答案