相關(guān)習(xí)題
 0  257941  257949  257955  257959  257965  257967  257971  257977  257979  257985  257991  257995  257997  258001  258007  258009  258015  258019  258021  258025  258027  258031  258033  258035  258036  258037  258039  258040  258041  258043  258045  258049  258051  258055  258057  258061  258067  258069  258075  258079  258081  258085  258091  258097  258099  258105  258109  258111  258117  258121  258127  258135  266669 

科目: 來源: 題型:

【題目】如圖,在海岸線一側(cè)處有一個美麗的小島,某旅游公司為方便游客,在上設(shè)立了兩個報名點,滿足中任意兩點間的距離為.公司擬按以下思路運作:先將兩處游客分別乘車集中到之間的中轉(zhuǎn)點(異于兩點),然后乘同一艘輪游輪前往島.據(jù)統(tǒng)計,每批游客處需發(fā)車2輛, 處需發(fā)車4輛,每輛汽車每千米耗費元,游輪每千米耗費元.(其中是正常數(shù))設(shè),每批游客從各自報名點到島所需運輸成本為元.

(1) 寫出關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;

(2) 問:中轉(zhuǎn)點距離處多遠(yuǎn)時, 最小?

查看答案和解析>>

科目: 來源: 題型:

【題目】在單位正方體ABCD﹣A1B1C1D1中,O是B1D1的中點,如圖建立空間直角坐標(biāo)系.

(1)求證:B1C∥平面ODC1;
(2)求異面直線B1C與OD夾角的余弦值;
(3)求直線B1C到平面ODC1的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是邊長為4的等邊三角形,D為AB邊中點,且CC1=2AB.

(1)求證:平面C1CD⊥平面ABC;
(2)求證:AC1∥平面CDB1;
(3)求三棱錐D﹣CAB1的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)當(dāng)時,求曲線上的點到直線的距離的最大值;

(Ⅱ)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) ,把方程f(x)=x的根按從小到大的順序排列成一個數(shù)列,則該數(shù)列的通項公式為(
A. (n∈N*
B.an=n(n﹣1)(n∈N*
C.an=n﹣1(n∈N*
D.an=2n﹣2(n∈N*

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB,PC的中點.

(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)若∠PDA=45°,求EF與平面ABCD所成的角的大。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知命題p:關(guān)于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(x2﹣x+a)的定義域為R,若p∨q為真p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】三棱錐P﹣ABC的四個頂點都在球D的表面上,PA⊥平面ABC,AB⊥BC,PA=3,AB=BC=2,則球O的表面積為(
A.13π
B.17π
C.52π
D.68π

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)f(x)=ax+kax(a>0且a≠1)在R上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)y=x+ (a>0)在區(qū)間 上單調(diào)遞減,在區(qū)間 上單調(diào)遞增;函數(shù)
(1)請寫出函數(shù)f(x)=x2+ (a>0)與函數(shù)g(x)=xn+ (a>0,n∈N,n≥3)在(0,+∞)的單調(diào)區(qū)間(只寫結(jié)論,不證明);
(2)求函數(shù)h(x)的最值;
(3)討論方程h2(x)﹣3mh(x)+2m2=0(0<m≤30)實根的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案