科目: 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.在如圖所示的陽馬,側(cè)棱底面,且,點是的中點,連接.
(1)證明:平面,試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,請說明理由;
(2)記陽馬的體積為,四面體的體積為,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】信息科技的進步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費的習慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費,并且該銀行正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟效益最大,該銀行應(yīng)裁員多少人?此時銀行所獲得的最大經(jīng)濟效益是多少萬元?
查看答案和解析>>
科目: 來源: 題型:
【題目】為了緩解交通壓力,某省在兩個城市之間特修一條專用鐵路,用一列火車作為公共交通車.已知每日來回趟數(shù)y是每次拖掛車廂節(jié)數(shù)x的一次函數(shù),如果該列火車每次拖4節(jié)車廂,每日能來回16趟;如果每次拖6節(jié)車廂,則每日能來回10趟,火車每日每次拖掛車廂的節(jié)數(shù)是相同的,每節(jié)車廂滿載時能載客110人.
(1)求出y關(guān)于x的函數(shù);
(2)該火車滿載時每次拖掛多少節(jié)車廂才能使每日營運人數(shù)最多?并求出每天最多的營運人數(shù)?
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點.
(1)求證:平面AED⊥平面A1FD1;
(2)在AE上求一點M,使得A1M⊥平面ADE.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}的各項均為正數(shù),且bn是 與 的等比中項,求bn的前n項和Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx與g(x)=log4(a2x﹣a),其中f(x)是偶函數(shù).
(1)求實數(shù)k的值;
(2)求函數(shù)g(x)的定義域;
(3)若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙、丙三人獨立地對某一技術(shù)難題進行攻關(guān).甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為 .
(1)求這一技術(shù)難題被攻克的概率;
(2)若該技術(shù)難題末被攻克,上級不做任何獎勵;若該技術(shù)難題被攻克,上級會獎勵a萬元.獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金a萬元;若只有2人攻克,則獎金獎給此二人,每人各得 萬元;若三人均攻克,則獎金獎給此三人,每人各得 萬元.設(shè)甲得到的獎金數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對任意的x∈[1,a+1],總有f(x)≤0,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com