科目: 來(lái)源: 題型:
【題目】已知△ABC的頂點(diǎn)A(6,1),AB邊上的中線CM所在直線方程為2x﹣y﹣7=0,AC邊上的高BH所在直線方程為x﹣2y﹣6=0.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線BC的方程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知q和n均為給定的大于1的自然數(shù),設(shè)集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
(1)當(dāng)q=2,n=3時(shí),用列舉法表示集合A.
(2)設(shè)s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.證明:若an<bn,則s<t.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)S={x|x=m+n,m、n∈Z}.
(1)若a∈Z,則a是否是集合S中的元素?
(2)對(duì)S中的任意兩個(gè)x1、x2,則x1+x2、x1·x2是否屬于S?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】過(guò)點(diǎn)M(0,1)的直線l交橢圓C: 于A,B兩點(diǎn),F(xiàn)1為橢圓的左焦點(diǎn),當(dāng)△ABF1周長(zhǎng)最大時(shí),直線l的方程為 .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對(duì)圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓是他的研究成果之一,指的是:已知?jiǎng)狱c(diǎn)M與兩定點(diǎn)A、B的距離之比為λ(λ>0,λ≠1),那么點(diǎn)M的軌跡就是阿波羅尼斯圓.下面,我們來(lái)研究與此相關(guān)的一個(gè)問(wèn)題.已知圓:x2+y2=1和點(diǎn) ,點(diǎn)B(1,1),M為圓O上動(dòng)點(diǎn),則2|MA|+|MB|的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】設(shè)橢圓C的兩個(gè)焦點(diǎn)是F1、F2 , 過(guò)F1的直線與橢圓C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】函數(shù)是定義在(﹣∞,+∞)上的奇函數(shù).
(1)求a的值;
(2)當(dāng)x∈(0,1]時(shí),tf(x)≥2x﹣2恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)(0,1)的直線與圓x2+y2=4相交于A、B兩點(diǎn),若 ,則點(diǎn)P的軌跡方程是( )
A.
B.x2+(y﹣1)2=1
C.
D.x2+(y﹣1)2=2
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y=3sin(2x + )
(1)求最小正周期、對(duì)稱軸和對(duì)稱中心;
(2)簡(jiǎn)述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com