科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內(nèi),若存在過點(diǎn)P的直線交圓C于A、B兩點(diǎn),且△PBC的面積是△PAC的面積的2倍,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t為參數(shù), ),以坐標(biāo)原點(diǎn)o為極點(diǎn),x軸的正半軸為極軸,并取相同的長度單位,建立極坐標(biāo)系.曲線
(1)若直線l曲線 相交于點(diǎn) , , ,證明: 為定值;
(2)將曲線 上的任意點(diǎn) 作伸縮變換 后,得到曲線 上的點(diǎn) ,求曲線 的內(nèi)接矩形 周長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(2)若關(guān)于的不等式在有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓M:與軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長;
(3)若點(diǎn)是直線上的動(dòng)點(diǎn),過點(diǎn)作直線與圓M相切,為切點(diǎn),求四邊形面積的最小值.
【答案】(1) (2) (3)
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令,得到關(guān)于的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1) ∵圓M:與軸相切
∴ ∴
(2) 令,則 ∴
∴
(3)
∵的最小值等于點(diǎn)到直線的距離,
∴ ∴
∴四邊形面積的最小值為.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓與軸交于, 兩點(diǎn),設(shè)直線的方程為.
(1)當(dāng)直線與圓相切時(shí),求直線的方程;
(2)已知直線與圓相交于, 兩點(diǎn).
(ⅰ)若,求實(shí)數(shù)的取值范圍;
(ⅱ)直線與直線相交于點(diǎn),直線,直線,直線的斜率分別為, , ,
是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)列{an}中,an=cos (n∈N*)
(1)試將an+1表示為an的函數(shù)關(guān)系式;
(2)若數(shù)列{bn}滿足bn=1﹣ (n∈N*),猜想an與bn的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l:x-2y+2m-2=0.
(1)求過點(diǎn)(2,3)且與直線l垂直的直線的方程;
(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.
【答案】(1);(2)
【解析】試題分析:(1)由直線的斜率為,可得所求直線的斜率為,代入點(diǎn)斜式方程,可得答案;(2)直線與兩坐標(biāo)軸的交點(diǎn)分別為,則所圍成的三角形的面積為,根據(jù)直線與兩坐標(biāo)軸所圍成的三角形的面積為大于,構(gòu)造不等式,解得答案.
試題解析:(1)與直線l垂直的直線的斜率為-2,
因?yàn)辄c(diǎn)(2,3)在該直線上,所以所求直線方程為y-3=-2(x-2),
故所求的直線方程為2x+y-7=0.
(2) 直線l與兩坐標(biāo)軸的交點(diǎn)分別為(-2m+2,0),(0,m-1),
則所圍成的三角形的面積為×|-2m+2|×|m-1|.
由題意可知×|-2m+2|×|m-1|>4,化簡得(m-1)2>4,
解得m>3或m<-1,
所以實(shí)數(shù)m的取值范圍是(-∞,-1)∪(3,+∞).
【方法點(diǎn)睛】本題主要考查直線的方程,兩條直線平行與斜率的關(guān)系,屬于簡單題. 對直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1) ;(2),這類問題盡管簡單卻容易出錯(cuò),特別是容易遺忘斜率不存在的情況,這一點(diǎn)一定不能掉以輕心.
【題型】解答題
【結(jié)束】
18
【題目】在平面直角坐標(biāo)系中,已知經(jīng)過原點(diǎn)O的直線與圓交于兩點(diǎn)。
(1)若直線與圓相切,切點(diǎn)為B,求直線的方程;
(2)若,求直線的方程;
查看答案和解析>>
科目: 來源: 題型:
【題目】某校舉辦校園科技文化藝術(shù)節(jié),在同一時(shí)間安排《生活趣味數(shù)學(xué)》和《校園舞蹈賞析》兩場講座.已知A、B兩學(xué)習(xí)小組各有5位同學(xué),每位同學(xué)在兩場講座任意選聽一場.若A組1人選聽《生活趣味數(shù)學(xué)》,其余4人選聽《校園舞蹈賞析》;B組2人選聽《生活趣味數(shù)學(xué)》,其余3人選聽《校園舞蹈賞析》.
(1)若從此10人中任意選出3人,求選出的3人中恰有2人選聽《校園舞蹈賞析》的概率;
(2)若從A、B兩組中各任選2人,設(shè)X為選出的4人中選聽《生活趣味數(shù)學(xué)》的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(7,8),B(10,4),C(2,-4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.
【答案】(1);(2)
【解析】試題分析:(1)根據(jù)中點(diǎn)坐標(biāo)公式求出中點(diǎn)的坐標(biāo),根據(jù)斜率公式可求得的斜率,利用點(diǎn)斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點(diǎn)斜式可求邊上的高所在直線的方程.
試題解析:(1)由B(10,4),C(2,-4),得BC中點(diǎn)D的坐標(biāo)為(6,0),
所以AD的斜率為k==8,
所以BC邊上的中線AD所在直線的方程為y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直線的斜率為k==1,
所以BC邊上的高所在直線的斜率為-1,
所以BC邊上的高所在直線的方程為y-8=-(x-7),即x+y-15=0.
【題型】解答題
【結(jié)束】
17
【題目】已知直線l:x-2y+2m-2=0.
(1)求過點(diǎn)(2,3)且與直線l垂直的直線的方程;
(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com