相關習題
 0  258801  258809  258815  258819  258825  258827  258831  258837  258839  258845  258851  258855  258857  258861  258867  258869  258875  258879  258881  258885  258887  258891  258893  258895  258896  258897  258899  258900  258901  258903  258905  258909  258911  258915  258917  258921  258927  258929  258935  258939  258941  258945  258951  258957  258959  258965  258969  258971  258977  258981  258987  258995  266669 

科目: 來源: 題型:

【題目】ABC中,∠A,B,C的對邊分別為, , ,若,

(1)求∠B的大。

(2), ,求ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) .

(1)判斷的奇偶性并予以證明;

(2)時,求使的解集.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內,若存在過點P的直線交圓C于A、B兩點,且△PBC的面積是△PAC的面積的2倍,則實數(shù)m的取值范圍為

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù), ),以坐標原點o為極點,x軸的正半軸為極軸,并取相同的長度單位,建立極坐標系.曲線
(1)若直線l曲線 相交于點 , , ,證明: 為定值;
(2)將曲線 上的任意點 作伸縮變換 后,得到曲線 上的點 ,求曲線 的內接矩形 周長的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷函數(shù)的單調性并證明;

(2)若關于的不等式有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓M軸相切.

(1)的值;

(2)求圓M軸上截得的弦長;

(3)若點是直線上的動點,過點作直線與圓M相切,為切點,求四邊形面積的最小值.

【答案】(1) (2) (3)

【解析】試題分析:(1)先將圓的一般方程化成標準方程,利用直線和圓相切進行求解;(2),得到關于的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉化為點到直線的的距離進行求解.

試題解析:(1)   ∵圓M軸相切  

   

(2) ,則  

 

(3)

 的最小值等于點到直線的距離, 

 

∴四邊形面積的最小值為

型】解答
束】
20

【題目】在平面直角坐標系中,圓的方程為,且圓軸交于 兩點,設直線的方程為

(1)當直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于, 兩點.

(。┤,求實數(shù)的取值范圍;

(ⅱ)直線與直線相交于點,直線,直線,直線的斜率分別為, , ,

是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在數(shù)列{an}中,an=cos (n∈N*
(1)試將an+1表示為an的函數(shù)關系式;
(2)若數(shù)列{bn}滿足bn=1﹣ (n∈N*),猜想an與bn的大小關系,并證明你的結論.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線lx2y2m20

(1)求過點(2,3)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標軸所圍成的三角形的面積大于4,求實數(shù)m的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)由直線的斜率為,可得所求直線的斜率為,代入點斜式方程,可得答案;(2)直線與兩坐標軸的交點分別為,則所圍成的三角形的面積為,根據(jù)直線與兩坐標軸所圍成的三角形的面積為大于,構造不等式,解得答案.

試題解析:(1)與直線l垂直的直線的斜率為-2,

因為點(2,3)在該直線上,所以所求直線方程為y3=-2(x2),

故所求的直線方程為2xy70

(2) 直線l與兩坐標軸的交點分別為(-2m+2,0),(0,m-1),

則所圍成的三角形的面積為×|-2m+2|×|m-1|.

由題意可知×|-2m+2|×|m-1|>4,化簡得(m-1)2>4,

解得m>3或m<-1,

所以實數(shù)m的取值范圍是(-,-1)∪(3,+∞)

【方法點睛】本題主要考查直線的方程,兩條直線平行與斜率的關系,屬于簡單題. 對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1 ;(2,這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.

型】解答
束】
18

【題目】在平面直角坐標系中,已知經(jīng)過原點O的直線與圓交于兩點。

(1)若直線與圓相切,切點為B,求直線的方程;

(2)若,求直線的方程;

查看答案和解析>>

科目: 來源: 題型:

【題目】某校舉辦校園科技文化藝術節(jié),在同一時間安排《生活趣味數(shù)學》和《校園舞蹈賞析》兩場講座.已知A、B兩學習小組各有5位同學,每位同學在兩場講座任意選聽一場.若A組1人選聽《生活趣味數(shù)學》,其余4人選聽《校園舞蹈賞析》;B組2人選聽《生活趣味數(shù)學》,其余3人選聽《校園舞蹈賞析》.
(1)若從此10人中任意選出3人,求選出的3人中恰有2人選聽《校園舞蹈賞析》的概率;
(2)若從A、B兩組中各任選2人,設X為選出的4人中選聽《生活趣味數(shù)學》的人數(shù),求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,已知ABC三個頂點坐標為A(7,8),B(10,4),C(2,-4)

(1)求BC邊上的中線所在直線的方程;

(2)求BC邊上的高所在直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)中點坐標公式求出中點的坐標,根據(jù)斜率公式可求得的斜率,利用點斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點斜式可求邊上的高所在直線的方程.

試題解析:1)由B(10,4)C(2,-4)BC中點D的坐標為(6,0),

所以AD的斜率為k8,

所以BC邊上的中線AD所在直線的方程為y08(x6),

8xy480

2)由B(10,4),C(2,-4)BC所在直線的斜率為k1,

所以BC邊上的高所在直線的斜率為-1

所以BC邊上的高所在直線的方程為y8=-(x7),即xy150

型】解答
束】
17

【題目】已知直線lx2y2m20

(1)求過點(23)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標軸所圍成的三角形的面積大于4,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案