科目: 來源: 題型:
【題目】某市環(huán)保部門對市中心每天的環(huán)境污染情況進行調查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時刻(時)的關系為,,其中是與氣象有關的參數(shù),且.若用每天的最大值為當天的綜合污染指數(shù),并記作.
(1)令,,求的取值范圍;
(2)求的表達式,并規(guī)定當時為綜合污染指數(shù)不超標,求當在什么范圍內時,該市市中心的綜合污染指數(shù)不超標.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數(shù),得下面柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).
(Ⅰ)求的分布列;
(Ⅱ)若要求,確定的最小值;
(Ⅲ)以購買易損零件所需費用的期望值為決策依據(jù),在與之中選其一,應選用哪個?
查看答案和解析>>
科目: 來源: 題型:
【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學期望.
(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩名射手在一次射擊中得分為兩個相互獨立的隨機變量ξ,η,已知甲、乙兩名射手在每次射擊中射中的環(huán)數(shù)大于6環(huán),且甲射中10,9,8,7環(huán)的概率分別為0.5,3a,a,0.1,乙射中10,9,8環(huán)的概率分別為0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的數(shù)學期望與方差,并以此比較甲、乙的射擊技術.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解一種植物的生長情況,抽取一批該植物樣本測量高度(單位:cm),其頻率分布直方圖如圖所示.
(1)求該植物樣本高度的平均數(shù)x和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)假設該植物的高度Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)x,σ2近似為樣本方差s2,利用該正態(tài)分布求P(64.5<Z<96).
(附:=10.5.若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4)
查看答案和解析>>
科目: 來源: 題型:
【題目】平面直角坐標系xoy中,橢圓C1: + =1(a>b>0)的離心率為 ,過橢圓右焦點F作兩條相互垂直的弦,當其中一條弦所在直線斜率為0時,兩弦長之和為6.
(1)求橢圓的方程;
(2)A,B是拋物線C2:x2=4y上兩點,且A,B處的切線相互垂直,直線AB與橢圓C1相交于C,D兩點,求弦|CD|的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)有兩個分廠生產某種零件,按規(guī)定內徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質品.從兩個分廠生產的零件中各抽出了500件,量其內徑尺寸,得結果如下表:
甲廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙廠:
分組 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
頻數(shù) | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)試分別估計兩個分廠生產的零件的優(yōu)質品率;
(2)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認為“兩個分廠生產的零件的質量有差異”.
甲 廠 | 乙 廠 | 合計 | |
優(yōu)質品 | |||
非優(yōu)質品 | |||
合計 |
附:
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O為AC與BD的交點,E為棱PB上一點.
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】一袋中有大小相同的4個紅球和2個白球,給出下列結論:
①從中任取3球,恰有一個白球的概率是;
②從中有放回的取球6次,每次任取一球,則取到紅球次數(shù)的方差為;
③現(xiàn)從中不放回的取球2次,每次任取1球,則在第一次取到紅球的條件下,第二次再次取到紅球的概率為;
④從中有放回的取球3次,每次任取一球,則至少有一次取到紅球的概率為.
其中所有正確結論的序號是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】4月23人是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查,下面是根據(jù)調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書謎”,低于60分鐘的學生稱為“非讀書謎”
(1)求x的值并估計全校3000名學生中讀書謎大概有多少?(經頻率視為頻率)
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書謎”與性別有關? 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com