相關(guān)習(xí)題
 0  260141  260149  260155  260159  260165  260167  260171  260177  260179  260185  260191  260195  260197  260201  260207  260209  260215  260219  260221  260225  260227  260231  260233  260235  260236  260237  260239  260240  260241  260243  260245  260249  260251  260255  260257  260261  260267  260269  260275  260279  260281  260285  260291  260297  260299  260305  260309  260311  260317  260321  260327  260335  266669 

科目: 來(lái)源: 題型:

【題目】某大學(xué)藝術(shù)專(zhuān)業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,已知直三棱柱ABC-A1B1C1中,ACBC,D為AB的中點(diǎn),AC=BC=BB1.

求證:(1)BC1AB1.

(2)BC1平面CA1D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,E是棱BC的中點(diǎn),試在棱CC1上求一點(diǎn)P,使得平面A1B1P⊥平面C1DE.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,正四棱柱ABCD-A1B1C1D1中,底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,E,F分別是棱AB,BC的中點(diǎn),EF∩BD=G.求證:平面B1EF⊥平面BDD1B1.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點(diǎn).

求證:CD⊥平面PAE.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在棱長(zhǎng)為a的正方體OABC-O1A1B1C1中,E,F分別是AB,BC上的動(dòng)點(diǎn),且AE=BF,求證:A1F⊥C1E.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= cos(2x﹣ )﹣2sinxcosx.(13分)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求證:當(dāng)x∈[﹣ , ]時(shí),f(x)≥﹣

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)E在棱AA1上,要使CE⊥平面B1DE,則AE=_____.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,則平面PQC與平面DCQ的位置關(guān)系為(  )

A. 平行 B. 垂直

C. 相交但不垂直 D. 位置關(guān)系不確定

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}和等比數(shù)列{bn}滿(mǎn)足a1=b1=1,a2+a4=10,b2b4=a5
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求和:b1+b3+b5+…+b2n1

查看答案和解析>>

同步練習(xí)冊(cè)答案