相關(guān)習題
 0  260563  260571  260577  260581  260587  260589  260593  260599  260601  260607  260613  260617  260619  260623  260629  260631  260637  260641  260643  260647  260649  260653  260655  260657  260658  260659  260661  260662  260663  260665  260667  260671  260673  260677  260679  260683  260689  260691  260697  260701  260703  260707  260713  260719  260721  260727  260731  260733  260739  260743  260749  260757  266669 

科目: 來源: 題型:

【題目】如圖,四邊形 為菱形,四邊形 為平行四邊形,設(shè) 相交于點 ,

(1)證明:平面 平面
(2)若 ,求三棱錐 的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】若 上存在最小值,則實數(shù) 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】祖沖之之子祖暅是我國南北朝時代偉大的科學家,他在實踐的基礎(chǔ)上提出了體積計算的原理:“冪勢既同,則積不容異”.意思是,如果兩個等高的幾何體 在同高處截得的截面面積恒等,那么這兩個幾何體的體積相等.此即祖暅原理.利用這個原理求球的體積時,需要構(gòu)造一個滿足條件的幾何體,已知該幾何體三視圖 如圖所示,用一個與該幾何體的下底面平行相距為 h(0<h<2) 的平面截該幾何體,則截面面積為 ( )


A.
B.
C.
D.π(4-h2)

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+5x.
(1)當a=﹣1時,求不等式f(x)≤5x+3的解集;
(2)若x≥﹣1時有f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρsin2θ=2acosθ(a>0),直線l的參數(shù)方程為 (t為參數(shù)),直線l與曲線C相交于A,B兩點.
(1)寫出曲線C的直角坐標方程和直線l的普通方程;
(2)若|AB|=2 ,求a的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當a=0時,求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)橢圓E的方程為 +y2=1(a>1),O為坐標原點,直線l與橢圓E交于點A,B,M為線段AB的中點.
(1)若A,B分別為E的左頂點和上頂點,且OM的斜率為﹣ ,求E的標準方程;
(2)若a=2,且|OM|=1,求△AOB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取3名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)ξ表示所抽取的3名同學中得分在[80,90)的學生個數(shù),求ξ的分布列及其數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)證明:數(shù)列{ }是等差數(shù)列;
(Ⅱ)設(shè)bn=3n ,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大;
(2)求cos( ﹣B)﹣2sin2 的取值范圍.

查看答案和解析>>

同步練習冊答案