相關(guān)習(xí)題
 0  261850  261858  261864  261868  261874  261876  261880  261886  261888  261894  261900  261904  261906  261910  261916  261918  261924  261928  261930  261934  261936  261940  261942  261944  261945  261946  261948  261949  261950  261952  261954  261958  261960  261964  261966  261970  261976  261978  261984  261988  261990  261994  262000  262006  262008  262014  262018  262020  262026  262030  262036  262044  266669 

科目: 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,且離心率為, 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.

(1)求橢圓的方程;

(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線, 分別與橢圓交于點(diǎn), ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.

【答案】(1);(2)

【解析】試題分析:(1)設(shè)由題,由此求出,可得橢圓的方程;

(2)設(shè),

當(dāng)直線的斜率不存在時(shí),可得;

當(dāng)直線的斜率不存在時(shí),同理可得.

當(dāng)直線、的斜率存在時(shí),,

設(shè)直線的方程為,則由消去通過(guò)運(yùn)算可得

,同理可得,由此得到直線的斜率為,

直線的斜率為,進(jìn)而可得.

試題解析:(1)設(shè)由題

解得,則,

橢圓的方程為.

(2)設(shè) ,

當(dāng)直線的斜率不存在時(shí),設(shè),則

直線的方程為代入,可得,

,則,

直線的斜率為,直線的斜率為,

,

當(dāng)直線的斜率不存在時(shí),同理可得.

當(dāng)直線、的斜率存在時(shí),,

設(shè)直線的方程為,則由消去可得:

,

,則,代入上述方程可得

,

,則

,

設(shè)直線的方程為,同理可得

直線的斜率為,

直線的斜率為,

.

所以,直線的斜率之積為定值,即.

型】解答
結(jié)束】
21

【題目】已知函數(shù) ,在處的切線方程為.

(1)求 ;

(2)若方程有兩個(gè)實(shí)數(shù)根, ,且,證明: .

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知圓,直線與圓相交于不同的兩點(diǎn),點(diǎn)是線段的中點(diǎn)。

(1)求直線的方程;

(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點(diǎn),不經(jīng)過(guò)點(diǎn),且的面積最大?若存在,求出的方程及對(duì)應(yīng)的的面積S;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.

(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿足以下表格:

日均派送單數(shù)

52

54

56

58

60

頻數(shù)(天)

20

30

20

20

10

回答下列問(wèn)題:

①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由.

(參考數(shù)據(jù): , , , , ,

【答案】(1);(2)見解析

【解析】試題分析:1甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元. 求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪平均數(shù)及方差:同理可求出這100天中乙兩種方案的日薪平均數(shù)及方差,

②不同的角度可以有不同的答案

試題解析:((1)甲方案中派送員日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為: ,

乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:

,

(2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則

,

,

乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則

,

②、答案一:

由以上的計(jì)算可知,雖然,但兩者相差不大,且遠(yuǎn)小于,即甲方案日薪收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.

答案二:

由以上的計(jì)算結(jié)果可以看出, ,即甲方案日薪平均數(shù)小于乙方案日薪平均數(shù),所以小明應(yīng)選擇乙方案.

型】解答
結(jié)束】
20

【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,且離心率為, 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.

(1)求橢圓的方程;

(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線, 分別與橢圓交于點(diǎn), ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知圓,直線與圓相交于不同的兩點(diǎn),點(diǎn)是線段的中點(diǎn)。

(1)求直線的方程;

(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點(diǎn)不經(jīng)過(guò)點(diǎn),且的面積最大?若存在,求出的方程及對(duì)應(yīng)的的面積S;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】四棱錐的底面為直角梯形,,,為正三角形.

(1)點(diǎn)為棱上一點(diǎn),若平面,求實(shí)數(shù)的值;

(2)求點(diǎn)B到平面SAD的距離.

【答案】(1);(2)

【解析】試題分析:(1)由平面,可證,進(jìn)而證得四邊形為平行四邊形,根據(jù),可得;

(2)利用等體積法可求點(diǎn)到平面的距離.

試題解析:((1)因?yàn)?/span>平面SDM,

平面ABCD,

平面SDM 平面ABCD=DM,

所以

因?yàn)?/span>,所以四邊形BCDM為平行四邊形,又,所以M為AB的中點(diǎn).

因?yàn)?/span>,

.

(2)因?yàn)?/span> ,

所以平面,

又因?yàn)?/span>平面,

所以平面平面,

平面平面

在平面內(nèi)過(guò)點(diǎn)直線于點(diǎn),則平面,

中,

因?yàn)?/span>,所以,

又由題知

所以,

由已知求得,所以

連接BD,則,

又求得的面積為,

所以由點(diǎn)B 到平面的距離為.

型】解答
結(jié)束】
19

【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.

(1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標(biāo)滿足如圖所示的直方圖,其中當(dāng)某天的派送量指標(biāo)在 時(shí),日平均派送量為單.

若將頻率視為概率,回答下列問(wèn)題:

①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列,數(shù)學(xué)期望及方差;

②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由.

(參考數(shù)據(jù): , , , , , ,

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知是公差不為零的等差數(shù)列,滿足,且、成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足,求數(shù)列的前項(xiàng)和.

【答案】(1);(2)

【解析】試題分析:1)設(shè)等差數(shù)列 的公差為,由a3=7,且、成等比數(shù)列.可得,解之得即可得出數(shù)列的通項(xiàng)公式;

2)由(1)得,則,由裂項(xiàng)相消法可求數(shù)列的前項(xiàng)和.

試題解析:(1)設(shè)數(shù)列的公差為,且由題意得,

,解得

所以數(shù)列的通項(xiàng)公式.

(2)由(1)得

,

.

型】解答
結(jié)束】
18

【題目】四棱錐的底面為直角梯形,,,為正三角形.

(1)點(diǎn)為棱上一點(diǎn),若平面,求實(shí)數(shù)的值;

(2)求點(diǎn)B到平面SAD的距離.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),(其中),則的取值范圍為__________

【答案】

【解析】如圖:

,,作出函數(shù)圖象如圖所示

,,作出函數(shù)圖象如圖所示

,由有三個(gè)不同的零點(diǎn)

,如圖

為滿足有三個(gè)零點(diǎn),如圖可得

點(diǎn)睛:本題考查了函數(shù)零點(diǎn)問(wèn)題,先由導(dǎo)數(shù)求出兩個(gè)函數(shù)的單調(diào)性,繼而畫出函數(shù)圖像,再由函數(shù)的零點(diǎn)個(gè)數(shù)確定參量取值范圍,將問(wèn)題轉(zhuǎn)化為函數(shù)的兩根問(wèn)題來(lái)求解,本題需要化歸轉(zhuǎn)化,函數(shù)的思想,零點(diǎn)問(wèn)題等較為綜合,有很大難度。

型】填空
結(jié)束】
17

【題目】已知等比數(shù)列的前項(xiàng)和為,且滿足.

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,已知ACBC,BCCC1,設(shè)AB1的中點(diǎn)為D,B1CBC1E.

求證:(1)DE∥平面AA1C1C

(2)BC1AB1.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線,曲線,點(diǎn),以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系.

(1)求曲線的直角坐標(biāo)方程;

(2)過(guò)點(diǎn)的直線于點(diǎn),交于點(diǎn),若,求的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,

的面積等于,求

,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案