科目: 來源: 題型:
【題目】古代數(shù)學名著《九章算術(shù)》中的“盈不足”問題知兩鼠穿垣.今有垣厚5尺,兩鼠對穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.問:何日相逢?題意是:由垛厚五尺(舊制長度單位, 尺= 寸)的墻壁,大小兩只老鼠同時從墻的兩面,沿一直線相對打洞.大鼠第一天打進尺,以后每天的速度為前一天的倍;小鼠第一天也打進尺,以后每天的進度是前一天的一半.它們多久可以相遇?
A. 天 B. 天 C. 天 D. 天
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標方程;
(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,與交于點,與交于點,且,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否在犯錯誤的概率不超過0.5%的前提下認為喜愛打籃球與性別有關(guān)?說明你的理由.下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005] | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】“有黑掃黑、無黑除惡、無惡治亂”,維護社會穩(wěn)定和和平發(fā)展.掃黑除惡期間,大量違法分子主動投案,某市公安機關(guān)對某月連續(xù)7天主動投案的人員進行了統(tǒng)計,表示第天主動投案的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若與具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)判定變量與之間是正相關(guān)還是負相關(guān).(寫出正確答案,不用說明理由)
(3)預測第八天的主動投案的人數(shù)(按四舍五入取到整數(shù)).
參考公式:, .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合A={x|ax2+2x+1=0,a∈R},
(1)若A只有一個元素,試求a的值,并求出這個元素;
(2)若A是空集,求a的取值范圍;
(3)若A中至多有一個元素,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某幼兒園雛鷹班的生活老師統(tǒng)計2018年上半年每個月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:
溫差 | ||||||
患感冒人數(shù) | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)請用相關(guān)系數(shù)加以說明是否可用線性回歸模型擬合與的關(guān)系;
(Ⅱ)建立關(guān)于的回歸方程(精確到),預測當晝夜溫差升高時患感冒的小朋友的人數(shù)會有什么變化?(人數(shù)精確到整數(shù))
參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,
查看答案和解析>>
科目: 來源: 題型:
【題目】設直線與拋物線交于,兩點,與橢圓交于,兩點,直線,,,(為坐標原點)的斜率分別為,,,,若.
(1)是否存在實數(shù),滿足,并說明理由;
(2)求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的人(男、女各人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步量 性別 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)已知某人一天的走路步數(shù)超過步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有以上的把握認為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
附:,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選人,其中每日走路不超過步的有人,超過步的有人,設,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com