科目: 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近8年的年宣傳費和年銷售量數據作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,.
(1)根據散點圖判斷,與哪一個適宜作為年銷售量關于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立關于的回歸方程;
(3)已知這種產品的年利率與,的關系為.根據(Ⅱ)的結果回答下列問題:
(i)年宣傳費時,年銷售量及年利潤的預報值是多少?
(ii)年宣傳費為何值時,年利率的預報值最大?
附:對于一組數,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目: 來源: 題型:
【題目】為考查某種疫苗預防疾病的效果,進行動物實驗,得到統(tǒng)計數據如下:
未發(fā)病 | 發(fā)病 | 總計 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
總計 | 50 | 50 | 100 |
現從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為.
(1)求列聯(lián)表中的數據,,,的值;
(2)判斷疫苗是否有效?
(3)能夠有多大把握認為疫苗有效?
(參考公式,)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量(單位:克)分別在,,,,,中,經統(tǒng)計得頻率分布直方圖如圖所示.
(1)現按分層抽樣從質量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率;
(2)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:
方案:所有芒果以10元/千克收購;
方案:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)是R上的奇函數,且x>0時,f(x)=x2-4x+3.
求:(1)f(x)的解析式.
(2)已知t>0,求函數f(x)在區(qū)間[t,t+1]上的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線的參數方程為(為參數),在以坐標原點為極點,以軸正半軸為極軸的極坐標中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標方程;
(2)若點的坐標為,圓與直線交于兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調,求實數a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設全集為R,集合A={x|-3<x<4},B={x|1≤x≤10}.
(1)求A∪B,A∩(RB);
(2)已知集合C={x|2a-1≤x≤a+1},若C∩A=C,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com