相關(guān)習(xí)題
 0  263881  263889  263895  263899  263905  263907  263911  263917  263919  263925  263931  263935  263937  263941  263947  263949  263955  263959  263961  263965  263967  263971  263973  263975  263976  263977  263979  263980  263981  263983  263985  263989  263991  263995  263997  264001  264007  264009  264015  264019  264021  264025  264031  264037  264039  264045  264049  264051  264057  264061  264067  264075  266669 

科目: 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:

①若,則

②若,,,則

③若,,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目: 來源: 題型:

【題目】某大型超市公司計劃在市新城區(qū)開設(shè)分店,為確定在新城區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)統(tǒng)計后得到下列信息(其中表示在該區(qū)開設(shè)分店的個數(shù),表示這個分店的年收入之和):

分店個數(shù)(個)

2

3

4

5

6

年收入(萬元)

250

300

400

450

600

(Ⅰ)該公司經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的回歸方程;

(Ⅱ)假設(shè)該公司每年在新城區(qū)獲得的總利潤(單位:萬元)與之間的關(guān)系為,請根據(jù)(Ⅰ)中的線性回歸方程,估算該公司在新城區(qū)開設(shè)多少個分店時,才能使新城區(qū)每年每個分店的平均利潤最大.

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為: ,.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓心在軸上的圓與直線切于點、圓.

1)求圓的標(biāo)準(zhǔn)方程;

2)已知,圓軸相交于兩點(點在點的右側(cè))、過點任作一條傾斜角不為0的直線與圓相交于兩點、問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由、

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中,為參數(shù),且.

(Ⅰ)當(dāng)時,判斷函數(shù)是否有極值;

(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;

(Ⅲ)若對(Ⅱ)中所求的取值范圍內(nèi)的任意函數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱錐中,四邊形是矩形,平面平面,點分別為中點.

1)求證:平面.

2)若.

①求二面角的余弦值.

②求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,直線的方程為,點是直線上一動點,過點作圓的切線、,切點為.

(1)當(dāng)的橫坐標(biāo)為時,求的大小;

(2)求四邊形面積的最小值;

(3)求證:經(jīng)過、三點的圓必過定點,并求出所有定點的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,三棱錐中,平面,,點分別為,的中點.

(1)求證:平面;

(2)是線段上的點,且平面.

①確定點的位置;

②求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】四棱錐中,底面為平行四邊形,側(cè)面 ,分別是的中點,已知,,,.

(Ⅰ)證明:平面

(Ⅱ)證明:;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

平面直角坐標(biāo)系xOy中,曲線C.直線l經(jīng)過點Pm,0),且傾斜角為O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系.

)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于A,B兩點,且|PA·PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),存在,,使得成立成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案